首页> 外文期刊>International journal of modern physics, D. Gravitation, astrophysics, cosmology >Collective molecular dissipation on Navier-Stokes macroscopic scales: Accretion disc viscous modeling in SPH
【24h】

Collective molecular dissipation on Navier-Stokes macroscopic scales: Accretion disc viscous modeling in SPH

机译:Navier-Stokes宏观尺度上的集体分子耗散:SPH中的吸积盘粘性建模

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In the nonlinear Navier-Stokes viscous flow dynamics, physical damping is mathematically accomplished by a braking term in the momentum equation, corresponding to a heating term in the energy equation, both responsible of the conversion of mechanical energy into heat. In such two terms, it is essential the role of the viscous stress tensor, relative to contiguous macroscopic moving flow components, depending on the macroscopic viscosity coefficient.. A working formulation for. can always be found analytically, tuning some arbitrary parameters in the current known formulations, according to the geometry, morphology and physics of the flow. Instead, in this paper, we write an alternative hybrid formulation for., where molecular parameters are also included. Our expression for. has a more physical interpretation of the internal damping in dilute gases because the macroscopic viscosity is related to the small scale molecular dissipation, not strictly dependent on the flow morphology, as well as it is free of any arbitrary parameter. Results for some basic 2D tests are shown in the smoothed particle hydrodynamics (SPH) framework. An application to the 3D accretion disc modeling for low mass cataclysmic variables is also discussed. Consequences of the macroscopic viscosity coefficient reformulation in a more strictly physical terms on the thermal conductivity coefficient for dilute gases are also discussed.
机译:在非线性Navier-Stokes粘性流动动力学中,物理阻尼是通过动量方程式中的制动项(与能量方程式中的加热项相对应)在数学上实现的,二者均负责将机械能转换为热量。在这两个术语中,相对于连续的宏观移动流分量,粘性应力张量的作用至关重要,具体取决于宏观粘度系数。可以根据流动的几何形状,形态和物理性质,通过分析来找到,并在当前已知的公式中调整一些任意参数。取而代之的是,在本文中,我们为编写了一种替代混合配方,其中还包括分子参数。我们的表达。对稀气体中的内部阻尼具有更物理的解释,因为宏观粘度与小分子耗散有关,不严格取决于流动形态,并且没有任何任意参数。平滑粒子流体动力学(SPH)框架中显示了一些基本2D测试的结果。还讨论了在3D吸积盘建模中用于低质量催化变量的应用。还讨论了以更严格的物理术语对稀薄气体的热导率系数进行宏观粘度系数调整的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号