首页> 外文期刊>International Journal of Multiphase Flow >Modeling droplet collision and coalescence in an icing wind tunnel and the influence of these processes on droplet size distribution
【24h】

Modeling droplet collision and coalescence in an icing wind tunnel and the influence of these processes on droplet size distribution

机译:在结冰风洞中模拟液滴碰撞和聚结以及这些过程对液滴尺寸分布的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The DSD is determined theoretically near the icing object, which makes it possible to calculate the median volume diameter and the LWC of the aerosol cloud. The simulation results with regard to the LWC are compared to the experimental results obtained in this research and a satisfactory qualitative coincidence is to be found between them. (C) 2004 Elsevier Ltd. All rights reserved.A theoretical model of a two-phase air/dispersed water spray flow in an icing wind tunnel is presented here. The mutual interactions taking place within the dispersed phase known as binary droplet collisions, as well as gravitational sedimentation are considered. Where large droplets and low air stream velocities are concerned, the effect of gravity on droplet dynamics is considerable. Gravity causes the vertical deflection of droplet trajectories and an increase in liquid water content (LWC) in the bottom half of the wind tunnel. Droplet collision tends to influence the size, trajectory and velocity of droplets thus affecting the characteristics of the flow and, thereby, the formation of ice on the object placed in the wind tunnel. The present model simulates droplet motion and droplet collision in an icing wind tunnel, where it may be observed that bouncing, stable coalescence, or coalescence followed by separation are the possible outcomes of collision. In the theoretical examination, firstly, the effect of gravity on the vertical deflection of droplet trajectories and on the vertical distribution of the LWC near the icing object are taken into account, while droplet collision is disregarded. Then both factors are considered and collision outcome is determined together with the size and velocity of post-collision droplets. The initial droplet size distribution (DSD), as it occurs at the nozzle outlet, is estimated by a curve in accordance with previous experimental results.
机译:DSD理论上是在结冰物体附近确定的,这使得可以计算中值体积直径和气溶胶云的LWC。 LWC的仿真结果与本研究中获得的实验结果进行了比较,并且在它们之间找到了令人满意的定性吻合。 (C)2004 Elsevier Ltd.保留所有权利。这里介绍了结冰风洞中两相空气/分散水喷雾流的理论模型。考虑在分散相中发生的相互作用(称为二元液滴碰撞)以及重力沉降。在涉及大液滴和低气流速度的地方,重力对液滴动力学的影响是相当大的。重力会导致液滴轨迹的垂直偏转,并在风洞的下半部分增加液态水含量(LWC)。液滴碰撞倾向于影响液滴的大小,轨迹和速度,从而影响流动的特性,从而影响放置在风洞中的物体上的冰的形成。本模型模拟了结冰风洞中的液滴运动和液滴碰撞,在该模型中可以观察到反弹,稳定合并或合并然后分离是碰撞的可能结果。在理论研究中,首先,考虑了重力对液滴轨迹的垂直偏转和结冰对象附近LWC的垂直分布的影响,而忽略了液滴碰撞。然后考虑这两个因素,并确定碰撞结果以及碰撞后液滴的大小和速度。初始液滴尺寸分布(DSD)出现在喷嘴出口时,根据先前的实验结果通过曲线估算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号