...
首页> 外文期刊>International Journal of Material Forming: Official Journal of the European Scientific Association for Material Forming - ESAFORM >Springback prediction and validation in hot forming of a double-curved component in alloy 718
【24h】

Springback prediction and validation in hot forming of a double-curved component in alloy 718

机译:合金 718 中双曲面部件热成形的回弹预测和验证

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Abstract The demands associated with the production of advanced parts made of nickel-base superalloys are continuously increasing to meet the requirements of current environmental laws. The use of lightweight components in load-carrying aero-engine structures has the potential to significantly reduce fuel consumption and greenhouse gas emissions. Furthermore, the competitiveness of the aero-engine industry can benefit from reduced production costs and shorter development times while minimizing costly try-outs and increasing the efficiency of engines. The manufacturing process of aero-engine parts in superalloys at temperatures close to 950 °C produces reduced stamping force, residual stresses, and springback compared to traditional forming procedures occurring at room temperature. In this work, a hot forming procedure of a double-curved component in alloy 718 is studied. The mechanical properties of the material are determined between 20 and 1000 °C. The presence and nature of serrations in the stress–strain curves are assessed. The novel version of the anisotropic Barlat Yld2000-2D material model, which allows the input of thermo-mechanical data, is used in LS-DYNA to model the behaviour of the material at high temperatures. The effect of considering the stress-relaxation data on the predicted shape distortions is evaluated. The results show the importance of considering the thermo-mechanical anisotropic properties and stress-relaxation behaviour of the material to predict the final geometry of the component with high accuracy. The implementation of advanced material models in the finite element (FE) analyses, along with precise process conditions, is vital to produce lightweight components in advanced materials of interest to the aerospace industry.
机译:摘要 为了满足现行环境法规的要求,镍基高温合金先进零部件的生产需求不断提高。在承载航空发动机结构中使用轻质部件有可能显着降低燃料消耗和温室气体排放。此外,航空发动机行业的竞争力可以从降低生产成本和缩短开发时间中受益,同时最大限度地减少昂贵的试装并提高发动机的效率。与在室温下进行的传统成型工艺相比,在接近 950 °C 的温度下制造高温合金中的航空发动机零件会产生更小的冲压力、残余应力和回弹。在这项工作中,研究了合金718中双曲面部件的热成形工艺。材料的机械性能在 20 至 1000 °C 之间确定。 评估应力-应变曲线中锯齿的存在和性质。LS-DYNA中使用了各向异性Barlat Yld2000-2D材料模型的新版本,该模型允许输入热机械数据,以模拟材料在高温下的行为。评估了考虑应力松弛数据对预测形状变形的影响。结果表明,考虑材料的热机械各向异性特性和应力松弛行为对于高精度预测部件的最终几何形状非常重要。在有限元 (FE) 分析中实施先进的材料模型,以及精确的工艺条件,对于生产航空航天业感兴趣的先进材料的轻质部件至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号