首页> 外文期刊>International Journal of Nanotechnology >On the thermodynamic stability of metal oxide nanoparticles in aqueous solutions
【24h】

On the thermodynamic stability of metal oxide nanoparticles in aqueous solutions

机译:关于金属氧化物纳米粒子在水溶液中的热力学稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

Divided and ultra-divided systems such as colloidal and nanoparticle dispersions are generally unstable with regard to the size and number of their constituents because the solid-solution interfacial tension, acting as a driving force, leads to a reduction of the surface area to minimise the dispersion free enthalpy. Such phenomenon known as surface energy minimisation induces an increase in average particle size as a result of the decrease of the surface area at constant volume. For such a reason such dispersions are usually considered thermodynamically unstable. However, they can be thermodynamically stabilised if, by adsorption, the interfacial tension of the system becomes very low. This phenomenon, well known for microemulsions, is for the first time quantitatively modelled and demonstrated for transition metal oxide nanoparticles. When the pH of precipitation is sufficiently far from the point of zero charge and the ionic strength sufficiently high, the ripening of nanoparticles is avoided and their size can be monitored over one order of magnitude by tailoring solution pH and ionic strength. A model based on Gibbs adsorption equation leads to an analytical expression of the water-oxide interfacial tension as a function of the pH and the ionic strength of the dispersion/precipitation medium. The stability condition, defined by a 'zero' interfacial tension, corresponds to the chemical and electrostatic saturation of the water-oxide interface. In such a condition, the density of charged surface groups reaches its maximum, the interfacial tension its minimum and further adsorption forces the surface area to expand and consequently, the size of nanoparticles to decrease. An excellent agreement was found between the model prediction and the experimental results obtained from the aqueous precipitation of magnetite (Fe{sub}3O{sub}4) nanoparticles in basic medium. A general control of the metal oxide nanoparticle size when precipitated far from their point-of-zero-charge is thus expected.
机译:分散的和超分散的系统(例如胶体和纳米颗粒分散体)通常在组成的大小和数量方面不稳定,因为固溶界面张力(作为驱动力)会导致表面积减小,从而最大程度地减少无分散焓。这种现象称为表面能最小化,这是由于恒定体积下表面积的减少导致平均粒径的增加。因此,通常认为这种分散体是热力学不稳定的。但是,如果通过吸附使系统的界面张力变得很低,则可以使它们热力学稳定。对于微乳液众所周知的这种现象首次被定量地建模并证明了用于过渡金属氧化物纳米颗粒。当沉淀的pH值离零电荷点足够远且离子强度足够高时,可以避免纳米颗粒的成熟,并且可以通过调整溶液的pH值和离子强度来监控纳米颗粒的大小超过一个数量级。基于吉布斯吸附方程的模型可以得出水-氧化物界面张力随分散性/沉淀介质的pH值和离子强度的函数的解析表达式。由“零”界面张力定义的稳定性条件对应于水-氧化物界面的化学和静电饱和。在这种条件下,带电表面基团的密度达到最大值,界面张力达到最小值,进一步的吸附作用迫使表面积扩大,因此纳米粒子的尺寸减小。在基本介质中磁铁矿(Fe {sub} 3O {sub} 4)纳米粒子的水相沉淀中,模型预测与实验结果之间发现了极好的一致性。因此预期当远离其零电荷点沉淀时金属氧化物纳米颗粒尺寸的一般控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号