首页> 外文期刊>International Journal of Astrobiology >Slingshot dynamics for self-replicating probes and the effect on exploration timescales
【24h】

Slingshot dynamics for self-replicating probes and the effect on exploration timescales

机译:自我复制探针的弹弓动力学及其对探索时标的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Interstellar probes can carry out slingshot manoeuvres around the stars they visit, gaining a boost in velocity by extracting energy from the star’s motion around the Galactic Centre. These manoeuvres carry little to no extra energy cost, and in previous work it has been shown that a single Voyager-like probe exploring the Galaxy does so 100 times faster when carrying out these slingshots than when navigating purely by powered flight (Forgan et al. 2012). We expand on these results by repeating the experiment with self-replicating probes. The probes explore a box of stars representative of the local Solar neighbourhood, to investigate how self-replication affects exploration timescales when compared with a single non-replicating probe. We explore three different scenarios of probe behaviour: (i) standard powered flight to the nearest unvisited star (no slingshot techniques used), (ii) flight to the nearest unvisited star using slingshot techniques and (iii) flight to the next unvisited star that will give the maximum velocity boost under a slingshot trajectory. In all three scenarios, we find that as expected, using self-replicating probes greatly reduces the exploration time, by up to three orders of magnitude for scenarios (i) and (iii) and two orders of magnitude for (ii). The second case (i.e. nearest-star slingshots) remains the most time effective way to explore a population of stars. As the decision-making algorithms for the fleet are simple, unanticipated ‘race conditions’ among probes are set up, causing the exploration time of the final stars to become much longer than necessary. From the scaling of the probes’ performance with star number, we conclude that a fleet of self-replicating probes can indeed explore the Galaxy in a sufficiently short time to warrant the existence of the Fermi Paradox.
机译:星际探测器可以对所访问的恒星进行弹弓回旋,并通过从恒星在银河中心附近的运动中提取能量来提高速度。这些动作几乎没有或几乎没有额外的能源成本,并且在以前的工作中已经表明,执行这些弹弓的单个旅行者样探测器探索银河的速度比纯粹通过动力飞行导航时快100倍(Forgan等。 2012)。我们通过使用自复制探针重复实验来扩展这些结果。这些探针探索了一盒代表当地太阳社区的恒星,以研究与单个非复制探针相比,自我复制如何影响探索时间尺度。我们探索了三种不同的探测行为场景:(i)标准动力飞行到最近的未访问恒星(未使用弹弓技术),(ii)使用弹弓技术飞往最近的未访问恒星,以及(iii)飞往下一个未访问的恒星将在弹弓轨迹下提供最大速度提升。在所有三种情况下,我们都发现,如预期的那样,使用自我复制探针可以极大地减少探索时间,对于情况(i)和(iii)最多可减少三个数量级,对于(ii)可以减少两个数量级。第二种情况(即最近的恒星弹弓)仍然是探索恒星群体最有效的方式。由于舰队的决策算法很简单,因此在探测器之间建立了意想不到的“竞争条件”,导致最终恒星的探索时间变得比必要时间更长。从探测器性能与星数的比例关系可以得出结论,一组自我复制的探测器确实可以在足够短的时间内探索银河系,以保证费米悖论的存在。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号