首页> 外文期刊>International Journal of Greenhouse Gas Control >Power generation with CO_2 capture: Technology for CO_2 purification
【24h】

Power generation with CO_2 capture: Technology for CO_2 purification

机译:带有CO_2捕集的发电:CO_2净化技术

获取原文
获取原文并翻译 | 示例
           

摘要

The goal of this paper is to find methodologies for removing a selection of impurities (H_2O, O_2, Ar, N_2, SO_X and NO_X) from CO_2 present in the flue gas of two oxy-combustion power plants fired with either natural gas (467 MW) or pulverized fuel (596 MW). The resulting purified stream, containing mainly CO_2, is assumed to be stored in an aquifer or utilized for enhanced oil recovery (EOR) purposes. Focus has been given to power cycle efficiency i.e.: work and heat requirements for the purification process, CO_2 purity and recovery factor (kg of CO_2 that is sent to storage per kg of CO_2 in the flue gas). Two different methodologies (here called Case I and Case II) for flue gas purification have been developed, both based on phase separation using simple flash units (Case I) or a distillation column (Case II). In both cases purified flue gas is liquefied and its pressure brought to 110 atm prior to storage. Case I: A simple flue gas separation takes place by means of two flash units integratedin the CO_2 compression process. Heat in the process is removed by evaporating the purified liquid CO_2 streams coming out from both flashes. Case I shows a good performance when dealing with flue gases with low concentration of impurities. CO_2 fraction after purification is over 96% with a CO_2 recovery factor of 96.2% for the NG-fired flue gas and 88.1% for the PF-fired flue gas. Impurities removal together with flue gas compression and liquefaction reduces power plant output of 4.8% for the NG-fired flue gas and 11.6% for the PF-fired flue gas. The total amount of work requirement per kg stored CO_2 is 453 kJ for the NG-fired flue gas and 586 kJ for the PF-fired flue gas. Case II: Impurities are removed from the flue gas in a distillation column.Two refrigeration loops (ethane and propane) have been used in order to partially liquefy the flue gas and for heat removal from a partial condenser. Case II can remove higher amounts of impurities than Case I. CO_2 purity prior to storage is over 99%; CO_2 recovery factor is somewhat lower than in Case 1:95.4% for the NG-fired flue gas and 86.9% for the PF-fired flue gas, reduction in the power plant output is similar to Case I.Due to the lower CO_2 recovery factor the total amount of work per kg stored CO_2 is somewhat higher for Case II: 457 kj for the NG-fired flue gas and 603 kj for the PF-fired flue gas.
机译:本文的目的是找到从两种以天然气(467兆瓦)燃烧的氧气燃烧发电厂的烟气中存在的CO_2中除去某些杂质(H_2O,O_2,Ar,N_2,SO_X和NO_X)的方法。 )或粉状燃料(596兆瓦)。假定所得的主要包含CO_2的纯化物流被存储在含水层中或用于提高采油率(EOR)。已将重点放在功率循环效率上,即:净化过程的工作和热量要求,CO_2纯度和回收率(每千克烟道气中的CO_2发送到储存的千克CO_2)。已经开发了两种不同的烟气净化方法(此处称为案例I和案例II),均基于使用简单闪蒸装置(案例I)或蒸馏塔(案例II)的相分离。在这两种情况下,纯净的烟道气都被液化,并在储存前使其压力达到110 atm。案例I:通过集成在CO_2压缩过程中的两个闪蒸单元,进行简单的烟气分离。该过程中的热量通过蒸发从两次闪蒸中流出的纯净液态CO_2流来去除。在处理杂质浓度低的烟道气时,情况I表现出良好的性能。纯化后的CO_2分数超过96%,NG燃烧的烟气的CO_2回收率为96.2%,PF燃烧的烟气的CO_2回收率为88.1%。去除杂质以及烟道气压缩和液化会使天然气发电厂的天然气产量减少4.8%,而PF烟道气则减少11.6%。 NG燃烧的烟气每千克储存的CO_2的总工作量为453 kJ,PF燃烧的烟气为586 kJ。情况二:在蒸馏塔中去除烟气中的杂质,使用了两个制冷回路(乙烷和丙烷)以部分液化烟气并从部分冷凝器中除热。情况二可以去除比情况I更多的杂质。储存之前,CO_2的纯度超过99%。天然气烟气的CO_2回收率略低于案例1:95.4%,PF烟气的CO_2回收率低于案例1:95.4%,发电厂的产量减少与案例一相似。对于案例II,每千克存储的CO_2的总工作量要高一些:NG燃烧的烟道气为457 kj,PF燃烧的烟道气为603 kj。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号