首页> 外文期刊>International Journal of Fracture >Strain localization at the crack tip in single crystal CT specimens under monotonous loading: 3D Finite Element analyses and application to nickel-base superalloys
【24h】

Strain localization at the crack tip in single crystal CT specimens under monotonous loading: 3D Finite Element analyses and application to nickel-base superalloys

机译:单晶加载下单晶CT试样裂纹尖端的应变局部化:3D有限元分析及其在镍基高温合金中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Three-dimensional Finite Element simulations of mode I crack tip fields in Compact Tension specimens are presented for elastic ideally-plastic F.C.C. single crystals. The computations are carried out within the framework of classical continuum crystal plasticity for three crack orientations: (001)[110], (110)[001] and (001)[100]. The attention is drawn on the strong differences between the plastic strain field obtained at the free surface and in the mid-section of the specimens. The results are compared, on the one hand, to analytical solutions for stationary cracks in single crystals under plane strain conditions and, on the other hand, to experimental tests on a single crystal nickel-based superalloy at room temperature. For this material, both octahedral and cube slip must be taken into account. A good agreement between experimental observations and numerical results is found in the structure of the strain localization bands observed at the free surface of (110)[001] cracked specimens. In particular, the evidence of kink banding near the crack tip is provided, confirmed by EBSD orientation mapping. The measured values of local lattice rotation are in agreement with the Finite Element prediction.
机译:提出了紧凑拉伸试样中I型裂纹尖端场的三维有限元模拟,用于弹性理想塑性F.C.C.单晶。这些计算是在经典连续体晶体可塑性的框架内针对三个裂纹取向进行的:(001)[110],(110)[001]和(001)[100]。请注意在自由表面和试样中部获得的塑性应变场之间的强烈差异。一方面,将结果与在平面应变条件下单晶中固定裂纹的解析解进行比较;另一方面,在室温下将其与单晶镍基高温合金进行的实验测试进行了比较。对于这种材料,必须同时考虑八面体和立方体滑移。在(110)[001]开裂试样的自由表面观察到的应变局部化带的结构中,实验观察结果与数值结果之间有很好的一致性。尤其是,提供了裂纹尖端附近的扭结带的证据,这通过EBSD方向映射得到了证实。局部晶格旋转的测量值与有限元预测一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号