首页> 外文期刊>Bioengineered >Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production.
【24h】

Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production.

机译:酿酒酵母的有氧代谢和无氧代谢的先天能力对微生物电流产生的探索和比较。

获取原文
获取原文并翻译 | 示例
           

摘要

Saccharomyces cerevisiae possesses numerous advantageous biological features, such as being robust, easily handled, mostly non-pathogenic and having high catabolic rates, etc., which can be considered as merits for being used as a promising biocatalyst in microbial fuel cells (MFCs) for electricity generation. Previous studies have developed efficient MFC configurations to convert metabolic electron shuttles, such as cytoplasmic NADH, into usable electric current. However, no studies have elucidated the maximum potential of S. cerevisiae for current output and the underlying metabolic pathways, resulting from the interaction of thousands of reactions inside the cell during MFC operation. To address these two key issues, this study used in silico metabolic engineering techniques, flux balance analysis (FBA), and flux variability analysis with target flux minimization (FATMIN), to model the metabolic perturbation of S. cerevisiae under the MFC-energy extraction. The FBA results showed that, in the cytoplasmic NADH-dependent mediated electron transfer (MET) mode, S. cerevisiae had a potential to produce currents at up to 5.781 A/gDW for the anaerobic and 6.193 A/gDW for the aerobic environments. The FATMIN results showed that the aerobic and anaerobic metabolisms are resilient, relying on six and five contributing reactions respectively for high current production. Two reactions, catalyzed by glutamate dehydrogenase (NAD) (EC 1.4.1.3) and methylene tetrahydrofolate dehydrogenase (NAD) (EC 1.5.1.5), were shared in both current-production modes and contributed to over 80% of the identified maximum current outputs. It is also shown that the NADH regeneration was much less energy costly than biomass production rate. Taken together, our finding suggests that S. cerevisiae should receive more research effort for MFC electricity production.Registry Number/Name of Substance EC 1-4-1-2 (Glutamate Dehydrogenase). EC 1-5-1-15 (Methylenetetrahydrofolate Dehydrogenase (NAD+)).
机译:酿酒酵母具有许多有利的生物学特性,例如坚固,易于处理,大多无致病性和高分解代谢速率等,可以认为是在微生物燃料电池(MFCs)中用作有前途的生物催化剂的优点。发电。先前的研究已经开发出有效的MFC配置,以将新陈代谢的电子穿梭(例如细胞质NADH)转换为可用电流。然而,尚无研究阐明酿酒酵母在电流输出和潜在的代谢途径方面的最大潜力,这是由于MFC操作过程中细胞内部成千上万个反应的相互作用所致。为了解决这两个关键问题,本研究使用计算机代谢工程技术,通量平衡分析(FBA)和目标通量最小化(FATMIN)的通量变异性分析,来模拟MFC能量提取下酿酒酵母的代谢扰动。 。 FBA结果表明,在胞质NADH依赖性介导的电子转移(MET)模式下,酿酒酵母对厌氧环境产生的电流高达5.781 A / gDW,对有氧环境产生的电流高达6.193 A / gDW。 FATMIN结果表明,有氧和厌氧代谢具有弹性,分别依赖于六个和五个贡献反应来产生高电流。谷氨酸脱氢酶(NAD)(EC 1.4.1.3)和亚甲基四氢叶酸脱氢酶(NAD)(EC 1.5.1.5)催化的两个反应在两种电流产生模式下均共享,并贡献了确定的最大电流输出的80%以上。还显示出NADH再生比生物质生产率低得多的能源成本。综上所述,我们的发现表明酿酒酵母应为MFC的发电进行更多的研究工作。登记号/物质名称EC 1-4-1-2(谷氨酸脱氢酶)。 EC 1-5-1-15(亚甲基四氢叶酸脱氢酶(NAD +))。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号