首页> 外文期刊>International Journal of Epidemiology: Official Journal of the International Epidemiological Association >Bayesian methods for instrumental variable analysis with genetic instruments ('Mendelian randomization'): example with urate transporter SLC2A9 as an instrumental variable for effect of urate levels on metabolic syndrome.
【24h】

Bayesian methods for instrumental variable analysis with genetic instruments ('Mendelian randomization'): example with urate transporter SLC2A9 as an instrumental variable for effect of urate levels on metabolic syndrome.

机译:使用遗传仪器进行仪器变量分析的贝叶斯方法(“孟德尔随机化”):以尿酸盐转运蛋白SLC2A9作为尿酸盐水平对代谢综合征影响的仪器变量为例。

获取原文
获取原文并翻译 | 示例
       

摘要

The 'Mendelian randomization' approach uses genotype as an instrumental variable to distinguish between causal and non-causal explanations of biomarker-disease associations. Classical methods for instrumental variable analysis are limited to linear or probit models without latent variables or missing data, rely on asymptotic approximations that are not valid for weak instruments and focus on estimation rather than hypothesis testing. We describe a Bayesian approach that overcomes these limitations, using the JAGS program to compute the log-likelihood ratio (lod score) between causal and non-causal explanations of a biomarker-disease association. To demonstrate the approach, we examined the relationship of plasma urate levels to metabolic syndrome in the ORCADES study of a Scottish population isolate, using genotype at six single-nucleotide polymorphisms in the urate transporter gene SLC2A9 as an instrumental variable. In models that allow for intra-individual variability in urate levels, the lod score favouring a non-causal over a causal explanation was 2.34. In models that do not allow for intra-individual variability, the weight of evidence against a causal explanation was weaker (lod score 1.38). We demonstrate the ability to test one of the key assumptions of instrumental variable analysis--that the effects of the instrument on outcome are mediated only through the intermediate variable--by constructing a test for residual effects of genotype on outcome, similar to the tests of 'overidentifying restrictions' developed for classical instrumental variable analysis. The Bayesian approach described here is flexible enough to deal with any instrumental variable problem, and does not rely on asymptotic approximations that may not be valid for weak instruments. The approach can easily be extended to combine information from different study designs. Statistical power calculations show that instrumental variable analysis with genetic instruments will typically require combining information from moderately large cohort and cross-sectional studies of biomarkers with information from very large genetic case-control studies.
机译:“孟德尔随机化”方法使用基因型作为工具变量来区分生物标志物-疾病关联的因果解释。用于工具变量分析的经典方法仅限于没有潜在变量或数据缺失的线性或概率模型,它依赖于对弱工具无效的渐近逼近,并专注于估计而不是假设检验。我们描述了一种克服这些局限性的贝叶斯方法,使用JAGS程序来计算生物标志物-疾病关联的因果解释与非因果解释之间的对数似然比(lod得分)。为了证明这一方法,我们使用尿酸盐转运蛋白基因SLC2A9中六个单核苷酸多态性的基因型作为工具变量,在苏格兰人群分离株的ORCADES研究中检查了血浆尿酸盐水平与代谢综合征的关系。在允许个体内尿酸水平变化的模型中,倾向于非因果而非因果解释的lod得分为2.34。在不允许个体内部差异的模型中,因果关系的证据权重较弱(lod得分1.38)。我们通过构建基因型对结果的残留效应的测试,证明了测试工具变量分析的关键假设之一的能力-该工具对结果的影响仅通过中间变量来介导-经典工具变量分析开发的“过度识别限制”。此处描述的贝叶斯方法足够灵活,可以处理任何工具变量问题,并且不依赖于渐近逼近,而渐近逼近对于弱函数可能无效。该方法可以轻松扩展以合并来自不同研究设计的信息。统计功效计算表明,使用遗传仪器进行仪器变量分析通常需要将来自中度大型队列研究和生物标志物横断面研究的信息与来自大型遗传病例对照研究的信息相结合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号