...
首页> 外文期刊>International Journal of Flow Control >Numerical Investigation of Plasma Actuator Configurations for Flow Separation Control at Multiple Angles of Attack
【24h】

Numerical Investigation of Plasma Actuator Configurations for Flow Separation Control at Multiple Angles of Attack

机译:多个迎角下用于流分离控制的等离子作动器配置的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

The objective of this study was to analyze the effectiveness of aerodynamic plasma actuators as a means of active flow control over an airfoil at multiple angles of attack under low Reynolds number conditions. Each angle of attack corresponded to two different flow separation mechanisms (i.e., laminar separation bubble (LSB) and fully turbulent flow separation at stall conditions). Detailed parametric studies based on steady and unsteady Reynolds Averaged Navier-Stokes simulations were performed for a NACA 0012 airfoil at a chord Reynolds number of 10~5 to investigate the influence of the number, the location, the imposed body force magnitude, and steady vs. unsteady operation of plasma actuators on flow control effectiveness. For LSB control, as much as a 50% improvement in the lift to drag ratio was observed. Results also show that the same improvement was achieved using unsteady or multiple actuators, which can require as much as 75% less time averaged body force compared to a single, steady actuator. For the stalled airfoil case, significant recovery in aerodynamic performance was observed for a single, steady actuator. However, for the stall conditions considered in this study, unsteady and multiple actuator configurations do not provide the same enhancement as a single, steady actuator, which may be due to the nature of the flow separation (turbulent, trailing edge separation). The results of both cases show that the optimum location of a plasma actuator would be just upstream of the separation location for maximum effectiveness. This highlights the usefulness of multiple actuator systems for flow control over a range of operating conditions as the separation location may be dynamic.
机译:这项研究的目的是分析在低雷诺数条件下,气动等离子作动器作为对多个迎角的机翼进行主动流控制的一种手段的有效性。每个迎角对应于两种不同的流分离机制(即层流分离泡(LSB)和失速条件下的完全湍流分离)。基于稳态和非稳态雷诺的详细参数研究,对雷诺数为10〜5的NACA 0012机翼进行了平均Navier-Stokes模拟,以研究数量,位置,施加的力大小以及稳态vs等离子致动器的不稳定运行对流量控制的有效性。对于LSB控制,观察到升阻比提高了50%。结果还表明,使用非稳定或多个执行器也可以实现相同的改进,与单个稳定执行器相比,与传统的稳定执行器相比,平均时间所需的时间减少了多达75%。对于失速的机翼,对于单个稳定的执行器,观察到空气动力学性能的显着恢复。但是,对于本研究中考虑的失速条件,非稳态和多个执行器配置不能提供与单个稳态执行器相同的增强效果,这可能是由于流动分离(湍流,后缘分离)的特性所致。两种情况的结果都表明,等离子体致动器的最佳位置将位于分离位置的上游,以实现最大效率。由于分离位置可能是动态的,这突出显示了多个执行器系统在一定范围的运行条件下进行流量控制的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号