首页> 外文期刊>International journal of engine research >Development of a one-dimensional computational fluid dynamics modeling approach to predict cycle-to-cycle variability in spark-ignition engines based on physical understanding acquired from large-eddy simulation
【24h】

Development of a one-dimensional computational fluid dynamics modeling approach to predict cycle-to-cycle variability in spark-ignition engines based on physical understanding acquired from large-eddy simulation

机译:一维计算流体动力学建模方法的开发,该方法可基于从大涡流仿真中获得的物理知识来预测火花点火式发动机的周期变化。

获取原文
获取原文并翻译 | 示例
       

摘要

In order to satisfy emission standards and CO2 targets, spark-ignition engines are designed to operate with high dilution rates, compression ratios and boost levels, thus increasing the propensity for unstable combustion. Therefore it is important to address cycle-to-cycle variability (CCV) in complete engine simulators in order to support the design of viable architectures and control strategies. This work concerns the development, validation and application to a multi-cylinder spark-ignition engine of a physics-based one-dimensional combustion model able to render CCV. Its basis relies on the analysis of Large-Eddy Simulation (LES) of flow in a single-cylinder engine used to extract information relating physics to cyclic fluctuations. A one-dimensional CCV model is derived, accounting for variability related to in-cylinder aerodynamics, turbulence and mixture composition. A detailed spark-ignition model is developed, and the resulting model captures the strongly non-linear interactions between flow and combustion, starting from spark ignition and covering laminar/turbulent transition and wrinkling of the flame surface. A first validation is presented against dedicated experimental data from a single-cylinder engine. Detailed comparisons between measurements and predictions are reported on a set of parametric variations around a reference point to assess the physical bases of the model. The resulting model is applied to the simulation of the operating map of a multi-cylinder turbocharged engine. It is found able to reproduce CCV without the need to perform specific LES of that engine, highlighting a certain level of generality of the developed model.
机译:为了满足排放标准和CO2目标,火花点火发动机被设计为在高稀释率,压缩比和增压水平下运行,从而增加了不稳定燃烧的可能性。因此,重要的是要在完整的发动机模拟器中解决周期间差异(CCV),以支持可行的体系结构和控制策略的设计。这项工作涉及基于物理学的一维燃烧模型能够渲染CCV的多缸火花点火发动机的开发,验证和应用。它的基础取决于对单缸发动机中的大涡模拟(LES)的分析,该发动机用于提取与周期波动有关的物理信息。推导出一维CCV模型,其中考虑了与缸内空气动力学,湍流和混合气成分有关的可变性。建立了详细的火花点火模型,所得模型捕获了流动与燃烧之间强烈的非线性相互作用,从火花点火开始,覆盖了层流/湍流过渡和火焰表面起皱。针对来自单缸发动机的专用实验数据进行了首次验证。在参考点周围的一组参数变化上报告了测量和预测之间的详细比较,以评估模型的物理基础。所得模型将应用于多缸涡轮增压发动机的运行图的仿真。发现它能够再现CCV,而无需执行该引擎的特定LES,从而突出了已开发模型的一定程度的一般性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号