...
首页> 外文期刊>International Journal of Climatology: A Journal of the Royal Meteorological Society >Temporal-spatial distribution of the predictability limit of monthly sea surface temperature in the global oceans
【24h】

Temporal-spatial distribution of the predictability limit of monthly sea surface temperature in the global oceans

机译:全球海洋每月海表温度可预测性极限的时空分布

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To examine atmospheric and oceanic predictability based on nonlinear error growth dynamics, the authors introduced recently a new method using the nonlinear local Lyapunov exponent (NLLE). In this study, the NLLE method is employed to investigate the temporal-spatial distribution of the limit of sea surface temperature (SST) predictability, based on reanalysis monthly SST data. The results show that the annual mean limit of SST predictability is the greatest in the tropical central-eastern Pacific (>8 months). Relatively high values were also obtained for the tropical Indian and Atlantic Oceans (5-8 months). In the northern and southern mid-high latitude oceans, the limit of SST predictability is less than 6 months, with a minimum value of only 2-3 months. The limit of SST predictability in different oceanic regions shows significant seasonal variations, related to the persistence barriers that occur during particular seasons. In addition to the well-known spring persistence barrier (SPB) in the tropical central-eastern Pacific, persistence barriers also occur in other ocean areas during seasons other than spring. A winter persistence barrier (WPB) exists in the southeastern tropical Indian Ocean and the northern tropical Atlantic. In the North Pacific and North Atlantic, a persistence barrier exists around July-September. These seasonal persistence barriers cause a relatively low limit of SST predictability when predictions are made across the season in which the barriers occur. In contrast, when predictions are made initiated from the season with a persistence barrier, the SST errors show rapid initial growth but slow growth in the following seasons, resulting in a relatively high limit in predictability. Analyses also indicate that the possibility of really eliminating the effects of persistence barriers on SST errors by improving ocean-atmosphere coupled general circulation models (CGCMs) or the data assimilation procedure is very low.
机译:为了检验基于非线性误差增长动力学的大气和海洋可预测性,作者最近介绍了一种使用非线性局部Lyapunov指数(NLLE)的新方法。在这项研究中,基于重新分析每月SST数据,采用NLLE方法研究海表温度极限(SST)可预测性的时空分布。结果表明,在热带中东部太平洋(> 8个月),SST可预测性的年均限值最大。热带印度洋和大西洋(5-8个月)也获得了较高的数值。在北部和南部中高纬度海洋中,海表温度的可预测性极限小于6个月,最小值只有2-3个月。不同海洋区域的SST可预测性极限显示出明显的季节变化,与特定季节期间发生的持久性障碍有关。除了在热带中东部太平洋地区众所周知的春季持久性屏障(SPB)外,在除春季以外的其他季节,持久性屏障也出现在其他海洋地区。东南热带印度洋和北部热带大西洋存在冬季持久性屏障(WPB)。在北太平洋和北大西洋,大约7月至9月存在持久性障碍。当跨季节持续性障碍进行预测时,这些季节性持续性障碍会导致SST可预测性的相对较低限制。相反,当从一个持久性障碍的季节开始进行预测时,SST误差显示出初期的快速增长,但随后几个季节的增长缓慢,导致可预测性的上限相对较高。分析还表明,通过改善海洋-大气耦合的一般环流模型(CGCM)或数据同化程序,真正消除持久性障碍对SST错误的影响的可能性很小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号