首页> 外文期刊>International journal of biomedical imaging >Reconstruction for Time-Domain In Vivo EPR 3D Multigradient Oximetric Imaging-A Parallel Processing Perspective
【24h】

Reconstruction for Time-Domain In Vivo EPR 3D Multigradient Oximetric Imaging-A Parallel Processing Perspective

机译:时域体内EPR 3D多梯度血氧饱和度成像的重建-并行处理的观点

获取原文
获取原文并翻译 | 示例
           

摘要

Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23 X 23 x 23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet). The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time.
机译:使用单点成像方式进行的三维血氧电子顺磁共振成像会产生不成对的自旋密度和氧图像,可以很容易地区分小动物的正常组织和肿瘤组织。快速成像还可以响应呼吸空气中的氧含量来跟踪组织氧合作用的变化。但是,这涉及到每个3D血氧定量成像实验的千兆字节数据,这些实验涉及数字带通滤波和背景噪声减法,然后进行3D傅立叶重建。在常规的单处理器系统中,该过程相当慢。本文提供了一个使用OpenMP运行时支持和并行MATLAB来执行此类计算密集型程序的并行化框架。英特尔编译器用于开发基于OpenMP的并行C ++代码。该代码在四个双核AMD Opteron共享内存处理器上执行,以显着减少过滤任务的计算负担。结果表明,与等效的串行MATLAB代码相比,并行过滤代码已实现46.66的加速因子。另外,已经开发了并行MATLAB代码以执行3D傅里叶重构。对于具有23 X 23 x 23梯度步长的数据集,在重建过程和血氧定量计算过程中已达到4.57和4.25的加速因子。已使用数据的不同维度为串行和并行实现计算了执行时间,并提供了进行比较的时间。报告的系统经过精心设计,即使是低成本的个人计算机也可以通过本地互联网(NIHnet)轻松访问。实验结果表明,并行计算为从3D EPR血氧定量成像获得生物物理参数提供了强大的计算能力,几乎是实时的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号