首页> 外文期刊>International journal of bifurcation and chaos in applied sciences and engineering >Deciphering Dynamics of Epidemic Spread: The Case of Influenza Virus
【24h】

Deciphering Dynamics of Epidemic Spread: The Case of Influenza Virus

机译:流行病传播的破译动力学:以流感病毒为例

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we have proposed and analyzed a simple model of Influenza spread with an asymptotic transmission rate. Existence and uniqueness of solutions are established and shown to be uniformly bounded for all non-negative initial values. We have also found a sufficient condition which ensures the persistence of the model system. This implies that both susceptible and infected will always coexist at any location of the inhabited domain. This coexistence is independent of values of the diffusivity constants for two subpopulations. The global stability of the endemic equilibrium is established by constructing a Lyapunov function. By linearizing the system at the positive constant steady-state solution and analyzing the associated characteristic equation, conditions for Hopf and Turing bifurcations are obtained. We have also studied the criteria for diffusion-driven instability caused by local random movements of both susceptible and infective subpopulations. Turing patterns selected by the reaction-diffusion system under zero flux boundary conditions have been explored. Numerical simulations show that contact rate, β which is related to the reproduction number (Ro = β/a), plays an important role in spatial pattern formation. It was found that diffusion has appreciable influence on spatial spread of epidemics. The wave of chaos appears to be a dominant mode of disease dispersal. This suggests a bidirectional spread for influenza epidemics. The epidemic propagates in the form of nonchaotic and chaotic waves as observed in H1N1 incidence data of positive tests in 2009 in the United States. We have conducted numerical simulations to confirm the analytic work and observed interesting behaviors. This suggests that influenza has a complex dynamics of spatial spread which evolves with time.
机译:在本文中,我们提出并分析了具有渐近传播率的简单的流感传播模型。建立了解决方案的存在性和唯一性,并证明其对所有非负初始值具有统一的界。我们还发现了一个足以确保模型系统持久性的条件。这意味着易感者和受感染者将始终在居住域的任何位置共存。这种共存与两个子种群的扩散常数无关。地方均衡的全局稳定性是通过构造李雅普诺夫函数建立的。通过在正常数稳态解中线性化系统并分析相关的特征方程,可以获得Hopf和Turing分支的条件。我们还研究了由易感和感染性亚群的局部随机运动引起的扩散驱动的不稳定性的标准。探索了在零通量边界条件下由反应扩散系统选择的图灵模式。数值模拟表明,接触速率β与复制数(Ro =β/ a)有关,在空间图案形成中起着重要作用。发现扩散对流行病的空间传播有明显影响。混乱的浪潮似乎是疾病传播的主要方式。这表明流感流行是双向传播。如在2009年美国阳性试验的H1N1发病率数据中所观察到的那样,该流行病以非混沌和混沌波的形式传播。我们进行了数值模拟,以确认分析工作并观察到了有趣的行为。这表明流感具有随时间变化的复杂的空间传播动态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号