...
首页> 外文期刊>International journal of applied mechanics >A Thermomechanically Consistent Constitutive Theory for Modeling Micro-Void and/or Micro-Crack Driven Failure in Metals at Finite Strains
【24h】

A Thermomechanically Consistent Constitutive Theory for Modeling Micro-Void and/or Micro-Crack Driven Failure in Metals at Finite Strains

机译:有限应变下金属微空隙和/或微裂纹驱动失效建模的热力学一致本构理论

获取原文
获取原文并翻译 | 示例
           

摘要

Within a continuum approximation, we present a thermomechanical finite strain plasticity model which incorporates the blended effects of micro-heterogeneities in the form of micro-cracks and micro-voids. The former accounts for cleavage-type of damage without any volume change whereas the latter is a consequence of plastic void growth. Limiting ourselves to isotropy, for cleavage damage a scalar damage variable d is an element of [0, 1] is incorporated. Its conjugate variable, the elastic energy release rate, and evolution law follow the formal steps of thermodynamics of internal variables requiring postulation of an appropriate damage dissipation potential. The growth of void volume fraction f is incorporated using a Gurson-type porous plastic potential postulated at the effective stress space following continuum damage mechanics principles. Since the growth of micro-voids is driven by dislocation motion around voids the dissipative effects corresponding to the void growth are encapsulated in the plastic flow. Thus, the void volume fraction is used as a dependent variable using the conservation of mass. The predictive capability of the model is tested through uniaxial tensile tests at various temperatures Theta is an element of [-125 degrees C, 125 degrees C]. It is shown, via fracture energy plots, that temperature driven ductile-brittle transition in fracture mode is well captured. With an observed ductile-brittle transition temperature around -50 degrees C, at lower temperatures fracture is brittle dominated by d whereas at higher temperatures it is ductile dominated by f.
机译:在一个连续近似中,我们提出了一个热机械有限应变可塑性模型,该模型以微裂纹和微孔的形式结合了微异质性的混合效应。前者是裂痕型破坏的原因,而体积没有任何变化,而后者是塑性空隙增长的结果。将自身限制为各向同性,对于劈裂损伤,标量损伤变量d是[0,1]的元素。它的共轭变量,弹性能量释放速率和演化规律遵循内部变量热力学的正式步骤,需要假定适当的损伤耗散潜力。空隙体积分数f的增长是使用Gurson型多孔塑性势并入其中的,该势在连续应力力学原理基础上假设在有效应力空间处。由于微空隙的生长是由围绕空隙的位错运动驱动的,因此对应于空隙生长的耗散效应被封装在塑性流中。因此,利用质量守恒,将空隙体积分数用作因变量。通过在各种温度下的单轴拉伸测试来测试模型的预测能力。Theta是[-125摄氏度,125摄氏度]的元素。通过断裂能图显示,在断裂模式下温度驱动的韧性-脆性转变得到了很好的捕获。在观察到的-50℃左右的韧性-脆性转变温度下,在较低的温度下,断裂是脆性的,以d为主导,而在较高的温度下,它的韧性是由f的主导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号