首页> 外文期刊>International Journal of Plasticity >A thermomechanically coupled finite-strain constitutive model for cyclic pseudoelasticity of polycrystalline shape memory alloys
【24h】

A thermomechanically coupled finite-strain constitutive model for cyclic pseudoelasticity of polycrystalline shape memory alloys

机译:多晶形状记忆合金循环伪弹性的热机械耦合有限菌株组成模型

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents a new 3D thermomechanical finite-strain constitutive model for cyclic pseudoelasticity of polycrystalline shape memory alloys (SMAs). The model considers four primary characteristics related to the cyclic behavior of SMA that have not been integrally addressed within the finite-strain framework: (i) large accumulated residual strain that results from the residual martensite and dislocations slipping during cycling; (ii) degeneration of pseudoelasticity and hysteresis loop due to the increase of dislocation density and internal stresses with the number of cycles; (iii) rate dependence that can be attributed to the thermomechanical coupling effect; (iv) evolution of the phase transformation from abrupt to smooth transition, as a consequence of the diversified crystallographic orientations of the grains, the heterogeneity of internal stresses, and the presence of non transforming precipitates during cycling. Based on the decomposition of finite Hencky strain into elastic, transformation, residual and thermal components, the model is constructed within a thermodynamically consistent framework. Evolution equations associated with the internal variables are derived from the reduced form of energy balance, the Clausius-Duhem form of entropy inequality, and a Helmholtz free energy function that includes elastic, thermal, interaction and constraint energies. The model is used to simulate the cyclic tensile experiments on NiTi wire at different loading rates. The good agreement of the model predictions against the experimental data demonstrates the capabilities of the proposed model to well describe cyclic pseudoelasticity of polycrystalline SMAs, and to capture the aforementioned characteristics. Furthermore, in order to demonstrate the capability of the cyclic model to solve multi-axial problems, a finite elements simulation of a SMA torsion spring undergoing large strains and rotations resulting in local multi-axial non-proportional stress and strain evolutions is performed. (c) 2017 Elsevier Ltd. All rights reserved.
机译:本文介绍了一种新的3D热机械有限菌株组成型模型,用于多晶形状记忆合金的循环假弹性(SMA)。该模型考虑与在有限菌株框架内没有一体地解决的SMA的循环行为有关的四个主要特征:(i)来自残留的马氏体和循环在循环期间滑动的大规模累积残留菌株; (ii)由于循环次数的位错密度和内应力的增加而导致的假旋转性和滞后回路的退化; (iii)依赖于热机械耦合效应的速率依赖性; (iv)由于晶粒的多样化结晶取向,内应力的异质性,内应力的异质性以及在循环期间,因此在平滑过渡的过程中的演变。基于有限的Hencky应变分解成弹性,转化,残余和热成分,该模型构造在热力学上一致的框架内。与内部变量相关联的演化方程源自能量平衡形式,熵熵不等式的Clausius-Duem形式,以及包括弹性,热,相互作用和约束能量的Helmholtz自由能功能。该模型用于在不同装载率下模拟NITI线上的循环拉伸实验。模型预测对实验数据的良好一致性地证明了所提出的模型的能力,以良好描述多晶SMA的循环假弹性,并捕获上述特性。此外,为了展示循环模型来解决多轴问题的能力,执行经历大菌株和旋转的SMA扭转弹簧的有限元模拟,导致局部多轴非比例应力和应变演化。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号