...
首页> 外文期刊>International journal of applied mechanics >Dynamic pull-in instability and vibration analysis of a nonlinear microcantilever gyroscope under step voltage considering squeeze film damping
【24h】

Dynamic pull-in instability and vibration analysis of a nonlinear microcantilever gyroscope under step voltage considering squeeze film damping

机译:考虑挤压膜阻尼的阶跃电压下非线性微悬臂陀螺仪的动态引入不稳定性和振动分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this paper, a nonlinear model is used to analyze the dynamic pull-in instability and vibrational behavior of a microcantilever gyroscope. The gyroscope has a proof mass at its end and is subjected to nonlinear squeeze film damping, step DC voltages as well as base rotation excitation. The electrostatically actuated and detected microgyroscopes are subjected to coupled flexural-flexural vibrations that are related by base rotation. In order to detune the stiffness and natural frequencies of the system, DC voltages are applied to the proof mass electrodes in drive and sense directions. Nonlinear integro differential equations of the system are derived using extended Hamilton principle considering nonlinearities in curvature, inertia, damping and electrostatic forces. Afterward, the Gelerkin decomposition method is implemented to reduce partial differential equations of microgyroscope deflection to a system of nonlinear ordinary equations. By using the 4th order Runge-Kutta method, the nonlinear ordinary equations are solved for various values of damping coefficients, air pressures, base rotation and various initial gaps between the proof mass electrodes and the substrates. Results show that the geometric nonlinearity increases the dynamic pull-in voltage and also consideration of the base rotation gives an improved evaluation of the dynamic instability. It is shown that the squeeze film damping has a considerable influence on the dynamic deflection of the microgyroscopes.
机译:在本文中,非线性模型用于分析微悬臂陀螺仪的动态引入不稳定性和振动行为。陀螺仪的末端具有检测质量,并且受到非线性挤压膜阻尼,阶跃直流电压以及基础旋转激励的影响。静电致动和检测的微型陀螺仪会受到耦合的弯曲-弯曲振动,这些振动与基础旋转有关。为了使系统的刚度和固有频率失谐,在驱动和检测方向上将直流电压施加到检测质量电极。考虑到曲率,惯性,阻尼和静电力的非线性,使用扩展的汉密尔顿原理导出系统的非线性积分微分方程。之后,采用格勒金分解法将微陀螺仪偏转的偏微分方程式简化为非线性常微分方程组。通过使用四阶Runge-Kutta方法,求解了阻尼系数,气压,基础旋转和检测质量电极与基板之间的各种初始间隙的各种值的非线性普通方程。结果表明,几何非线性会增加动态引入电压,并且考虑基本旋转会改善对动态不稳定性的评估。结果表明,挤压膜阻尼对微陀螺仪的动态偏转有很大影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号