首页> 外文期刊>International Journal for Numerical Methods in Engineering >A monolithic geometric multigrid solver for fluid-structure interactions in ALE formulation
【24h】

A monolithic geometric multigrid solver for fluid-structure interactions in ALE formulation

机译:ALE公式中用于流固耦合的整体几何多网格求解器

获取原文
获取原文并翻译 | 示例
           

摘要

We present a monolithic geometric multigrid solver for fluid-structure interaction problems in Arbitrary Lagrangian Eulerian coordinates. The coupled dynamics of an incompressible fluid with nonlinear hyperelastic solids gives rise to very large and ill-conditioned systems of algebraic equations. Direct solvers usually are out of question because of memory limitations, and standard coupled iterative solvers are seriously affected by the bad condition number of the system matrices. The use of partitioned preconditioners in Krylov subspace iterations is an option, but the convergence will be limited by the outer partitioning. Our proposed solver is based on a Newton linearization of the fully monolithic system of equations, discretized by a Galerkin finite element method. Approximation of the linearized systems is based on a monolithic generalized minimal residual method iteration, preconditioned by a geometric multigrid solver. The special character of fluid-structure interactions is accounted for by a partitioned scheme within the multigrid smoother only. Here, fluid and solid field are segregated as Dirichlet-Neumann coupling. We demonstrate the efficiency of the multigrid iteration by analyzing 2d and 3d benchmark problems. While 2d problems are well manageable with available direct solvers, challenging 3d problems highly benefit from the resulting multigrid solver. Copyright (C) 2015 John Wiley & Sons, Ltd.
机译:我们提出了一个单片几何多重网格求解器,用于任意拉格朗日欧拉坐标中的流体-结构相互作用问题。不可压缩流体与非线性超弹性固体的耦合动力学产生了非常大的病态代数方程组。由于内存限制,直接求解器通常是毫无疑问的,并且标准耦合的迭代求解器会严重受系统矩阵的不良条件数量影响。在Krylov子空间迭代中使用分区的预处理器是一种选择,但是收敛将受到外部分区的限制。我们提出的求解器基于完全整体方程组的牛顿线性化,并通过Galerkin有限元方法离散化。线性化系统的逼近基于整体的最小残差方法迭代,该迭代由几何多重网格求解器进行预处理。流体-结构相互作用的特殊性仅由多网格平滑器中的分区方案来解决。在这里,流体和固体场被分离为Dirichlet-Neumann耦合。我们通过分析2d和3d基准测试问题来证明多网格迭代的效率。尽管可以使用直接求解器很好地管理2d问题,但具有挑战性的3d问题在很大程度上得益于最终的多网格求解器。版权所有(C)2015 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号