...
首页> 外文期刊>International Biodeterioration & Biodegradation >Characteristics of developed granules containing phototrophic aerobic bacteria for minimizing carbon dioxide emission
【24h】

Characteristics of developed granules containing phototrophic aerobic bacteria for minimizing carbon dioxide emission

机译:含有光养性需氧菌的已开发颗粒的特性,可最大程度减少二氧化碳排放

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Photosynthetic process compromises the most effective and natural way for carbon recycling, in which photosynthetic bacteria utilized carbon dioxide (CO2) during the wastewater treatment processes. The aim of this study was to characterize phototrophic microbial granule in order to minimize CO2. A 3-L bioreactor phototrophic Sequencing Batch Reactor (SBRP) was applied to produce phototrophic aerobic granular sludge (AGS(P)) and the biomass concentration increased from 3 to 14 g L-1. Such growth has resulted in a maximum settling velocity of 40 mh(-1) with granule average size of approximately 2.0 mm. The high settling velocity was found to be attributed by the smooth, compact, and regular characteristics of the aerobic granules. High magnification microscopic analysis revealed that AGS(P) was dominated by cocci-shaped bacteria embedded within the extracellular polymeric substances (EPS). Detailed observation on the structure of the AGS(P) showed the presence of 30 mu m of cavity to allow nutrients and gas exchanges within the aerobic granule. Scanning Electron Microscope-Energy-Dispersive X-ray (SEM-EDX) examination showed AGS(P) composed of different types of inorganic and organic compounds. AGS(P) achieved 92% of CO2 reduction, indicating that CO2 biofixation can be performed facultatively by photosynthetic bacteria in an SBR based on the nomenclature of microbial species obtained. (C) 2015 Elsevier Ltd. All rights reserved.
机译:光合作用过程折衷了最有效,最自然的碳循环利用方式,其中,光合作用细菌在废水处理过程中利用了二氧化碳(CO2)。这项研究的目的是表征光养微生物颗粒,以最大程度地减少二氧化碳。应用3-L生物反应器光养顺序分批反应器(SBRP)生产光养菌性好氧颗粒污泥(AGS(P)),生物质浓度从3 g L-1增加到14 g L-1。这种增长导致最大沉降速度为40 mh(-1),平均颗粒大小约为2.0 mm。发现高沉降速度归因于好氧颗粒的光滑,致密和规则特性。高倍显微镜分析显示,AGS(P)主要由嵌入胞外聚合物(EPS)中的球菌形细菌控制。对AGS(P)结构的详细观察表明,存在30微米的空腔,以允许需氧颗粒内的养分和气体交换。扫描电子显微镜-能量色散X射线(SEM-EDX)检查显示AGS(P)由不同类型的无机和有机化合物组成。 AGS(P)实现了92%的CO2减少,表明基于获得的微生物种类的命名,光合作用细菌可以在SBR中同时进行CO2生物固定。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号