...
首页> 外文期刊>Information Sciences: An International Journal >A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic manipulators based on error minimization
【24h】

A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic manipulators based on error minimization

机译:基于误差最小化的机械手基于神经网络的逆运动学遗传算法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The solution of the inverse kinematics problem is fundamental in robot control. Many traditional inverse kinematics problem solutions, such as the geometric, iterative, and algebraic approaches, are inadequate for redundant robots. Recently, much attention has been focused on a neural-network-based inverse kinematics problem solution in robotics. However, the precision of the result obtained from a neural network requires improvement for certain sensitive tasks. In this paper, neural network and genetic algorithms are used together to solve the inverse kinematics problem of a six-joint Stanford robotic manipulator to minimize the error at the end effector. The proposed hybrid approach combines the characteristics of neural networks and evolutionary techniques to obtain more precise solutions. Three Elman neural networks were trained using separate training sets because one of the sets yields better results than the other two. The floating-point portions of each network were placed in the initial population of the genetic algorithm with the floating-point portions from randomly generated solutions. The end-effector position error was defined as the fitness function, and the genetic algorithm was implemented. Using this approach, the floating-point portion of the neural-network result was improved by up to ten significant digits using a genetic algorithm, and the error was reduced to micrometer levels. These results were compared with those from studies in the literature and found to be significantly better.
机译:运动学逆问题的解决是机器人控制的基础。许多传统的逆运动学问题解决方案,例如几何,迭代和代数方法,都不适合冗余机器人。最近,人们对机器人技术中基于神经网络的逆运动学问题解决方案进行了广泛关注。但是,从神经网络获得的结果的精度需要对某些敏感任务进行改进。在本文中,神经网络和遗传算法一起用于解决六关节斯坦福机器人操纵器的逆运动学问题,以最大程度地减小末端执行器的误差。提出的混合方法结合了神经网络和进化技术的特征,以获得更精确的解决方案。使用单独的训练集对三个Elman神经网络进行了训练,因为其中一个集比其他两个集产生了更好的结果。将每个网络的浮点部分与随机生成的解中的浮点部分一起放在遗传算法的初始种群中。将末端执行器位置误差定义为适应度函数,并实施遗传算法。使用这种方法,使用遗传算法将神经网络结果的浮点部分提高了多达十个有效数字,并且将误差减小到了微米级别。将这些结果与文献中的研究结果进行比较,发现明显更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号