...
首页> 外文期刊>Inhalation toxicology >Development of a physiologically based kinetic model for 99m-Technetium-labelled carbon nanoparticles inhaled by humans Human PBPK model for carbon nanoparticles
【24h】

Development of a physiologically based kinetic model for 99m-Technetium-labelled carbon nanoparticles inhaled by humans Human PBPK model for carbon nanoparticles

机译:人类吸入的99m Tech标记的碳纳米粒子的基于生理的动力学模型的开发碳纳米粒子的人PBPK模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Particulate air pollution is associated with respiratory and cardiovascular morbidity and mortality. Recent studies investigated whether and to which extent inhaled ultrafine particles are able to translocate into the bloodstream in humans. However, their conclusions were conflicting. We developed a physiologically based kinetic model for 99mtechnetium-labelled carbon nanoparticles (Technegas). The model was designed to analyse imaging data. It includes different translocation rates and kinetics for free technetium, and small and large technetium-labelled particles. It was calibrated with data from an experiment designed to assess the fate of nanoparticles in humans after inhalation of Technegas. The data provided time courses of radioactivity in the liver, stomach, urine, and blood. Parameter estimation was performed in a Bayesian context with Markov chain Monte Carlo (MCMC) techniques. Our analysis points to a likely translocation of particle-bound technetium from lung to blood, at a rate about twofold lower than the transfer rate of free technetium. Notably, restricting the model so that only free technetium would have been able to reach blood circulation resulted in much poorer fits to the experimental data. The percentage of small particles able to translocate was estimated at 12.7% of total particles. The percentage of unbound technetium was estimated at 6.7% of total technetium. To our knowledge, our model is the first PBPK model able to use imaging data to describe the absorption and distribution of nanoparticles. We believe that our modeling approach using Bayesian and MCMC techniques provides a reasonable description on which to base further model refinement.
机译:空气中的颗粒物污染与呼吸和心血管疾病的发病率和死亡率有关。最近的研究调查了吸入的超细颗粒是否能够以及在多大程度上能够转移到人的血液中。但是,他们的结论是矛盾的。我们为99 tech标记的碳纳米颗粒(Technegas)开发了基于生理的动力学模型。该模型旨在分析成像数据。它包括不同的游离small速率和动力学,以及大小and标记的颗粒。使用来自旨在评估人体吸入Technegas后纳米颗粒命运的实验数据对它进行了校准。数据提供了肝脏,胃,尿液和血液中放射性的时程。参数估计是使用Markov链蒙特卡洛(MCMC)技术在贝叶斯上下文中执行的。我们的分析指出,微粒结合的net可能会从肺向血液中转移,其速率比游离tech的转移率低约两倍。值得注意的是,限制模型以使只有游离tech才能达到血液循环,导致对实验数据的拟合度差得多。能够迁移的小颗粒的百分比估计为总颗粒的12.7%。未结合的net的百分比估计为总tech的6.7%。据我们所知,我们的模型是第一个能够使用成像数据描述纳米颗粒吸收和分布的PBPK模型。我们相信,使用贝叶斯(Bayesian)和MCMC技术的建模方法为进一步的模型优化提供了合理的描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号