首页> 外文期刊>Brain research. Brain research protocols >Superfusion of synaptosomes to study presynaptic mechanisms involved in neurotransmitter release from rat brain.
【24h】

Superfusion of synaptosomes to study presynaptic mechanisms involved in neurotransmitter release from rat brain.

机译:突触体的超融合以研究涉及大鼠脑神经递质释放的突触前机制。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Neurotransmitter release, as the primary way for neuron signaling, represents the target of a staggering number of studies in order to understand complex neural functions. The corpus striatum is a brain area especially rich in neurotransmitters where cholinergic neurons are supposed to play an associative role between different neuronal types, and therefore their activity is modulated by multiple neurotransmitter systems [Trends Neurosci. 17 (1994) 228; Trends Neurosci. 18 (1995) 527] [13,25]. In this regard, superfusion of synaptosomes is a useful in vitro approach to study the neurotransmitter release allowing an unequivocal interpretation of results obtained under accurately specified experimental conditions. Synaptosomes are sealed presynaptic nerve terminals obtained after homogenating brain tissue in iso-osmotic conditions [J. Physiol. 142 (1958) 187] [22]. Synaptosomes have been extensively used to study the mechanism of neurotransmitter release in vitro because they preserve the biochemical, morphological and electrophysiological properties of the synapse [J. Neurocytol. 22 (1993) 735] [42]. The superfusion, strictly a perfusion, allows both the continuous removal of the compounds present in the biophase of the presynaptic proteins and the easy exchange of the medium. We herein describe the method of superfusion of rat striatal synaptosomes to study the [(3)H]ACh release under basal and stimulated conditions. To depolarize the synaptosomal preparation three different strategies were employed: high extracellular concentration of K(+) (15 mM), a K(+) channel-blocker (4-aminopyridine, 1-30 microM), or veratridine (10 microM) which blocks the inactivation of voltage-dependent Na(+) channels.
机译:神经递质的释放,作为神经元信号传递的主要方式,代表了众多研究的目标,目的是了解复杂的神经功能。纹状体是大脑区域,尤其是神经递质,在该区域中胆碱能神经元应该在不同神经元类型之间起关联作用,因此它们的活性受到多种神经递质系统的调节[Trends Neurosci。 17(1994)228;趋势神经科学。 18(1995)527] [13,25]。在这方面,突触体的超融合是研究神经递质释放的有用的体外方法,可以明确解释在精确指定的实验条件下获得的结果。突触小体是在等渗条件下将脑组织匀浆后获得的密封的突触前神经末梢[J.生理学。 142(1958)187] [22]。由于突触小体保留了突触的生化,形态和电生理特性,因此已被广泛用于体外研究神经递质释放的机制[J. Chem.Sci。,2005,2,2,3]。神经细胞。 22(1993)735] [42]。上溢,严格来说是一次灌注,既可以连续去除突触前蛋白生物相中存在的化合物,又可以轻松地交换培养基。我们在本文中描述了大鼠纹状体突触体的超融合方法,以研究在基础和刺激条件下的[(3)H] ACh释放。为了使突触体制剂去极化,采用了三种不同的策略:高细胞外浓度的K(+)(15 mM),K(+)通道阻滞剂(4-氨基吡啶,1-30 microM)或藜芦定(10 microM),阻止电压依赖性Na(+)通道的失活。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号