首页> 外文期刊>Inorganic Chemistry Frontiers >Nanocrystalline iron oxide based electroactive materials in lithium ion batteries: the critical role of crystallite size, morphology, and electrode heterostructure on battery relevant electrochemistry
【24h】

Nanocrystalline iron oxide based electroactive materials in lithium ion batteries: the critical role of crystallite size, morphology, and electrode heterostructure on battery relevant electrochemistry

机译:锂离子电池中基于纳米晶氧化铁的电活性材料:微晶尺寸,形态和电极异质结构在电池相关电化学中的关键作用

获取原文
获取原文并翻译 | 示例
           

摘要

The importance of crystallite size control and direct synthesis of materials with desirable properties is broadly applicable for the rational design and development of new active materials for energy storage. Recently, the use of nanoparticles and crystallite size control has redefined electrode design strategies, due in part to the large surface area/volume ratios providing more pathways for ion movement within the bulk electrode. This review is structured primarily as a case study, where reports involving a specific densely structured iron oxide, magnetite, Fe3O4, and its use as an electrode in LIBs are used as examples. Due to the high theoretical capacity (924 mA h g-1), and opportunity for implementation of a low cost electrode material, magnetite was selected as the model material for this review. Notably, crystallite size, morphology, and electrode heterostructure can all play a critical role in battery relevant electrochemistry, particularly for crystallographically dense materials such as Fe3O4. Several examples of Fe3O4 based composites are described, incorporating different types of conductive materials such as carbons as part of the structure. Additionally, this review also provides a brief introduction to a newer iron oxide based material with a 2D layered structure, silver ferrite, where crystallite size control was synthetically achieved. By focusing on two specific iron oxide based nanoscale inorganic materials, this review highlights and distinguishes the contributions of electroactive material crystallite size, morphology and electrode heterostructure to electrochemical behavior, facilitating the future development of next generation of battery electrodes.
机译:控制晶粒尺寸和直接合成具有所需性能的材料的重要性广泛适用于合理设计和开发新的储能活性材料。最近,使用纳米颗粒和微晶尺寸控制已经重新定义了电极设计策略,部分原因是大的表面积/体积比为体电极内的离子运动提供了更多的途径。本文主要以案例研究为结构,其中以特定的致密结构的氧化铁,磁铁矿,Fe3O4及其在LIB中作为电极的使用为例。由于理论容量高(924 mA h g-1),并且有实现低成本电极材料的机会,因此选择磁铁矿作为本次回顾的模型材料。值得注意的是,微晶尺寸,形态和电极异质结构都可以在电池相关的电化学中发挥关键作用,特别是对于晶体密实的材料(例如Fe3O4)而言。描述了Fe3O4基复合材料的几个示例,其中结合了不同类型的导电材料(例如碳)作为结构的一部分。此外,本文还简要介绍了一种具有2D层状结构的新型铁氧化物基材料,即铁素体银,该材料通过合成方式实现了微晶尺寸控制。通过对两种特定的基于氧化铁的纳米级无机材料的研究,本综述重点介绍并区分了电活性材料的微晶尺寸,形态和电极异质结构对电化学行为的贡献,从而促进了下一代电池电极的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号