...
首页> 外文期刊>Industrial Biotechnology >Modeling of Oxygen Delignified Wheat Straw Enzymatic Hydrolysis as a Function of Hydrolysis Time, Enzyme Concentration, and Lignin Content
【24h】

Modeling of Oxygen Delignified Wheat Straw Enzymatic Hydrolysis as a Function of Hydrolysis Time, Enzyme Concentration, and Lignin Content

机译:氧脱木质素秸秆酶解与水解时间,酶浓度和木质素含量的关系

获取原文
获取原文并翻译 | 示例
           

摘要

Enzymatic hydrolysis is one of the most expensive operations of producing lignocellulosic ethanol, primarily due to high enzyme costs. Enzyme loadings must be reduced, and a well-developed kinetic model that can be easily implemented in process simulation software would greatly assist in determining optimum processing conditions. Oxygen-delignified wheat straw with different lignin contents was subjected to enzymatic hydrolysis at two different enzyme loadings for 72 h. Glucan conversion increased with increasing enzyme loading, decreasing lignin content, and decreasing solids concentration. By measuring total protein concentration and predicting the Novozyme 188 protein concentration, it was possible to calculate the cellulase protein concentration as a function of time. This work is the first report of a mass-based kinetic model capable of predicting glucose production during enzymatic hydrolysis of oxygen-delignified wheat straw, at different celluloses loadings (20 and 40 filter paper units/g glucan), lignin contents (5 and 9 wt%), and solids concentrations (5 to 10 wt% dry basis). The presented hydrolysis model includes a novel lignin factor to describe the amount of cellulases irreversibly adsorbed on lignin. The lignin factor also links glucose production during enzymatic hydrolysis to pretreatment severity. Mass transfer limitations present at 10 wt% solids were accounted for using a diffusion factor. Due to the model's simple solution and use of only five parameters, it can be easily implemented in process simulations.
机译:酶水解是生产木质纤维素乙醇最昂贵的操作之一,这主要是由于高酶成本。必须减少酶的负荷,并且可以在过程仿真软件中轻松实现的完善的动力学模型将极大地帮助确定最佳加工条件。木质素含量不同的氧脱木质素小麦秸秆在两种不同的酶负荷下进行了72小时的酶水解。葡聚糖转化率随酶负荷增加,木质素含量降低和固体浓度降低而增加。通过测量总蛋白浓度并预测Novozyme 188蛋白浓度,可以计算纤维素酶蛋白浓度随时间的变化。这项工作是基于质量的动力学模型的首次报告,该模型能够预测在不同纤维素含量(20和40滤纸单位/ g葡聚糖),木质素含量(5和9)下氧脱木素的小麦秸秆酶解过程中的葡萄糖生成。 wt%)和固体浓度(以干基计为5至10 wt%)。提出的水解模型包括一个新的木质素因子,以描述不可逆地吸附在木质素上的纤维素酶的数量。木质素因子还将酶水解过程中的葡萄糖产生与预处理的严重程度联系起来。使用扩散因子解释了固含量为10 wt%时的传质限制。由于该模型的简单解决方案以及仅使用五个参数,因此可以在过程仿真中轻松实现该模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号