...
首页> 外文期刊>Brain research >Quantitative differences in the circadian rhythm of locomotor activity and vasopressin and vasoactive intestinal peptide gene expression in the suprachiasmatic nucleus of tau mutant compared to wildtype hamsters.
【24h】

Quantitative differences in the circadian rhythm of locomotor activity and vasopressin and vasoactive intestinal peptide gene expression in the suprachiasmatic nucleus of tau mutant compared to wildtype hamsters.

机译:与野生型仓鼠相比,tau突变体上核中运动活动的昼夜节律和血管加压素和血管活性肠肽基因表达的定量差异。

获取原文
获取原文并翻译 | 示例
           

摘要

The activity profiles of homozygous tau mutant hamsters bred in our colony exhibit several differences when compared to wildtype golden hamsters. In addition, tau mutant hamsters respond to saturating white light pulses presented between circadian time (CT) 11 and CT 16 with extremely large phase shifts (type 0 resetting) after prolonged time in constant darkness. We measured five parameters of the activity rhythm early during exposure to constant darkness (DD) (cycles 5-9), and after 44-48 cycles in DD, and we confirmed the tau mutants' unusual phase shifting response to light. Next we determined whether neurotransmitter peptide mRNA levels in the SCN differed between wildtype and tau mutant hamsters exhibiting these divergent activity patterns and responses to light. After 49 circadian cycles in DD, tau mutant hamsters responded to a 1 h light pulse at CT 15 with phase shifts averaging 10.19 +/- 0.35 h. Among wildtype hamsters the mean phase shift was 1.22 +/- 0.34 h and the largest phase shift observed was 3.67 h. Total wheel revolutions/circadian cycle were significantly lower in tau mutants (4022 +/- 1103) vs. wildtypes (7528 +/- 458) and there was a significant decrease in wheel-running activity after prolonged exposure to DD, particularly among the wildtype hamsters (tau = 3045 +/- 972, wildtype = 4362 +/- 388 rev/circadian cycle). When analyzed by 5 min segments throughout the circadian cycle, the highest intensity wheel-running activity did not differ between groups and there was no significant effect of length of time in DD on this measure (tau = 38.5 +/- 6.3 and 38.4 +/- 4.7 rev/min, wildtype = 46.8 +/- 1.7 and 41.4 +/- 2.7 rev/min early or late in DD, respectively). The precision of activity onset differed greatly between groups with tau mutants exhibiting a much higher daily deviation from mean tau (1.00 +/- 0.24 h) than wildtypes (0.14 +/- .02 h). Activity onset became significantly less precise with increased time in DD: tau = 1.66 +/- 0.21 h, wildtype = 0.45 +/- 0.14 h after 44-48 circadian cycles. The length of the active period, alpha, was significantly shorter in tau mutants than in wildtypes (7.2 +/- 0.2 h vs. 8.0 +/- 0.2 h) but alpha was a similar percentage of tau in the two groups (tau mutant = 36%, wildtype = 33%). After 48 circadian cycles in DD, alpha measured 7.2 +/- 0.5 h in tau mutants and 8.9 +/- 0.6 h in wildtypes, thus there was no significant effect of time in DD on this parameter. Activity records of tau mutant animals appear more fragmented to the eye and we quantitated this with a computer-aided analysis of the number of bouts of wheel-running per active period. Wildtype hamsters exhibited 2.8 +/- 0.2 bouts of wheel-running activity early in DD and 3.1 +/- 0.2 bouts per circadian cycle later in DD. The activity records of tau mutant hamsters were significantly more fragmented but this group actually showed some consolidation of bouts per circadian cycle after prolonged time in DD (4.7 +/- 0.3 vs. 3.9 +/- 0.3 bouts per cycle). Wildtype and tau mutant hamsters were killed after 66-71 cycles in DD at either CT 4 or CT 16 and in situ hybridization was performed for vasopressin (AVP) and vasoactive intestinal peptide (VIP). Levels of AVP and VIP mRNA were significantly lower in tau mutant than wildtype hamsters at CT 16. We conclude that the tau mutation causes these differences in gene expression and we speculate that differences in the peptidergic output of the clock may have some relevance for the differences in the quantitative aspects of the activity rhythm and the response to light pulses exhibited by these animals.
机译:与野生型金色仓鼠相比,在我们的群体中繁殖的纯合tau突变仓鼠的活性谱显示出一些差异。此外,tau突变仓鼠在恒定的黑暗中长时间延长后,对昼夜时间(CT)11和CT 16之间出现的饱和白光脉冲具有极大的相移(类型0重置)产生响应。我们在暴露于恒定黑暗(DD)期间(周期5-9)的早期和在DD中经历44-48个周期之后,测量了活动节奏的五个参数,并且我们确认了tau突变体对光的异常相移响应。接下来,我们确定野生型和tau突变型仓鼠在SCN中的神经递质肽mRNA表达水平是否存在差异,这些仓鼠表现出这些不同的活动模式和对光的响应。在DD中进行49个昼夜节律周期后,tau突变仓鼠在CT 15处响应1 h光脉冲,相移平均为10.19 +/- 0.35 h。在野生型仓鼠中,平均相移为1.22 +/- 0.34 h,观察到的最大相移为3.67 h。与野生型(7528 +/- 458)相比,tau突变体(4022 +/- 1103)的车轮总转数/昼夜周期显着降低,尤其是在野生型中,轮转活动显着降低。仓鼠(tau = 3045 +/- 972,野生型= 4362 +/- 388 rev /昼夜周期)。在整个昼夜节律周期中以5分钟的时间段进行分析时,各组之间最高强度的轮转活动没有差异,并且DD的时间长度对此度量值没有显着影响(tau = 38.5 +/- 6.3和38.4 + / -DD早期或晚期分别为4.7转/分钟,野生型= 46.8 +/- 1.7和41.4 +/- 2.7转/分钟。 tau突变体组之间的活性发作精确度差异很大,与野生型(0.14 +/- .02 h)相比,tau突变体的每日偏离平均tau(1.00 +/- 0.24 h)的日偏差高得多。随着DD时间的延长,活动发作的精确性变得越来越差:在44-48个昼夜周期后,tau = 1.66 +/- 0.21 h,野生型= 0.45 +/- 0.14 h。 tau突变体的活跃期长度α明显短于野生型(7.2 +/- 0.2 h vs. 8.0 +/- 0.2 h),但两组中的tau百分比相似(tau突变体= 36%,野生型= 33%)。在DD中进行48个昼夜节律循环后,tau突变体中的alpha值测量为7.2 +/- 0.5 h,野生型中为8.9 +/- 0.6 h,因此DD的时间对该参数没有显着影响。 tau突变动物的活动记录看起来更加分散,我们通过计算机辅助分析了每个活跃时期的车轮行驶次数来量化这一点。野生型仓鼠在DD早期表现出2.8 +/- 0.2轮跑动,在DD以后每个昼夜周期表现出3.1 +/- 0.2轮跑。 tau突变仓鼠的活动记录更加分散,但该组实际上显示了在DD中延长时间后每个昼夜周期的回合合并(4.7 +/- 0.3 vs. 3.9 +/- 0.3回合)。在CT 4或CT 16的DD中66-71个循环后杀死野生型和tau突变型仓鼠,并对血管加压素(AVP)和血管活性肠肽(VIP)进行原位杂交。在CT 16时,tau突变体中的AVP和VIP mRNA的水平显着低于野生仓鼠。我们得出结论,tau突变引起基因表达的这些差异,并且我们推测时钟的肽能输出的差异可能与差异有关这些动物表现出的活动节律和对光脉冲的反应的定量方面。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号