...
首页> 外文期刊>Advanced Robotics: The International Journal of the Robotics Society of Japan >A Simple and Novel Hybrid Robotic System for Robot-Assisted Femur Fracture Reduction
【24h】

A Simple and Novel Hybrid Robotic System for Robot-Assisted Femur Fracture Reduction

机译:A Simple and Novel Hybrid Robotic System for Robot-Assisted Femur Fracture Reduction

获取原文
获取原文并翻译 | 示例

摘要

When performing femur fracture reduction surgery, both the patient and surgeon are exposed to a great amount of radiation, which is harmful to their health. In order to reduce such radiation from the usage of an image intensifier, various robots have been proposed for femur fracture reduction surgery. Most of these robots are based on serial architecture. The low transportable load and poor accuracy are both inherent in serial robots, which makes them inappropriate for femur fracture reduction. Some parallel robots based on the 'Stewart platform' have also been developed for femur fracture reduction, but their restricted workspace limits their applicability and accessibility. To balance the accuracy, payload and workspace, a new robot system is reported in this paper. The proposed robot system consists of a 2-d.o.f. device and a 6-d.o.f. hybrid robot. The 2-d.o.f. device is used for distraction, which requires a very large force. The hybrid robot is used to manipulate a bone fragment for alignment and fixation purposes. The hybrid robot possesses the characteristic of a Cartesian coordinate robot; all the movements of the actuators are linear, which makes its motion smooth for low-speed fracture reduction procedures. The forward and inverse kinematics of the proposed robot are analyzed. The analysis is much simpler compared to traditional serial manipulators and parallel Stewart platform robots. A prototype of the proposed system is made using a rapid fabrication system called Objet. The positioning accuracy of the proposed system is measured using a coordinate-measuring machine. The results show that the algorithms presented in this paper for the control of the robot are accurate and robust.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号