...
首页> 外文期刊>Atmospheric chemistry and physics >The impact of polar stratospheric ozone loss on Southern Hemisphere stratospheric circulation and climate
【24h】

The impact of polar stratospheric ozone loss on Southern Hemisphere stratospheric circulation and climate

机译:平流层极地臭氧损失对南半球平流层环流和气候的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The impact of polar stratospheric ozone loss resulting from chlorine activation on polar stratospheric clouds is examined using a pair of model integrations run with the fully coupled chemistry climate model UM-UKCA. Suppressing chlorine activation through heterogeneous reactions is found to produce modelled ozone differences consistent with observed ozone differences between the present and pre-ozone hole period. Statistically significant high-latitude Southern Hemisphere (SH) ozone loss begins in August and peaks in October-November, with >75% of ozone destroyed at 50 hPa. Associated with this ozone destruction is a > 12K decrease of the lower polar stratospheric temperatures and an increase of > 6K in the upper stratosphere. The heating components of this temperature change are diagnosed and it is found that the temperature dipole is the result of decreased short-wave heating in the lower stratosphere and increased dynamical heating in the upper stratosphere. The cooling of the polar lower stratosphere leads, through thermal wind balance, to an acceleration of the polar vortex and delays its breakdown by similar to 2 weeks. A link between lower stratospheric zonal wind speed, the vertical component of the Eliassen-Palm (EP) flux, F-z and the residual mean vertical circulation, (w) over bar*, is identified. In November and December, increased westerly winds and a delay in the breakup of the polar vortex lead to increases in F-z, indicating increased wave activity entering the stratosphere and propagating to higher altitudes. The resulting increase in wave breaking, diagnosed by decreases to the EP flux divergence, drives enhanced downwelling over the polar cap. Many of the stratospheric signals modelled in this study propagate down to the troposphere, and lead to significant surface changes in December.
机译:使用一对完全整合的化学气候模型UM-UKCA进行的模型集成,研究了由氯活化引起的极地平流层臭氧损失对极地平流层云的影响。发现通过非均相反应抑制氯活化可产生模拟的臭氧差异,该臭氧差异与当前和臭氧前空穴期之间观察到的臭氧差异一致。具有统计意义的高纬度南半球(SH)臭氧损失从8月开始,在10月至11月达到峰值,在50 hPa时,> 75%的臭氧被破坏。与这种臭氧破坏相关的是,低极平流层温度降低了> 12K,而高平流层升高了> 6K。诊断出这种温度变化的加热成分,发现温度偶极子是低平流层中短波加热减少和高平流层中动态加热增加的结果。极地下平流层的冷却通过热风平衡导致极地涡旋加速,并将其破裂延迟约2周。确定了低平流层纬向风速,Eliassen-Palm(EP)通量的垂直分量F-z和bar *上的剩余平均垂直环流(w)之间的联系。在11月和12月,西风的增加和极地涡旋破裂的延迟导致F-z的增加,表明进入平流层并传播到更高高度的波活动增加。通过减小EP通量散度可以诊断出由此导致的波浪破碎的增加,从而推动了极帽上的下沉增强。在这项研究中建模的许多平流层信号向下传播到对流层,并导致十二月的表面发生重大变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号