首页> 外文期刊>Atmospheric chemistry and physics >Climate impact on airborne particulate matter concentrations in California using seven year analysis periods
【24h】

Climate impact on airborne particulate matter concentrations in California using seven year analysis periods

机译:使用七年分析期,气候对加利福尼亚州空气中颗粒物浓度的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The effect of global climate change on the annual average concentration of fine particulate matter (PM_(2.5)) in California was studied using a climate-air quality modeling system composed of global through regional models. Output from the NCAR/DOE Parallel Climate Model (PCM) generated under the "business as usual" global emissions scenario was downscaled using the Weather Research and Forecasting (WRF) model followed by air quality simulations using the UCD/CIT airshed model. The system represents major atmospheric processes acting on gas and particle phase species including meteorological effects on emissions, advection, dispersion, chemical reaction rates, gas-particle conversion, and dry/wet deposition. The air quality simulations were carried out for the entire state of California with a resolution of 8-km for the years 2000-2006 (present climate with present emissions) and 2047-2053 (future climate with present emissions). Each of these 7-year analysis periods was analyzed using a total of 1008 simulated days to span a climatologically relevant time period with a practical computational burden. The 7-year windows were chosen to properly account for annual variability with the added benefit that the air quality predictions under the present climate could be compared to actual measurements. The climate-air quality modeling system successfully predicted the spatial pattern of present climate PM_(2.5) concentrations in California but the absolute magnitude of the annual average PM_(2.5) concentrations were under-predicted by ~4-39% in the major air basins. The majority of this under-prediction was caused by excess ventilation predicted by PCM-WRF that should be present to the same degree in the current and future time periods so that the net bias introduced into the comparison is minimized. Surface temperature, relative humidity (RH), rain rate, and wind speed were predicted to increase in the future climate while the ultra violet (UV) radiation was predicted to decrease in major urban areas in the San Joaquin Valley (SJV) and South Coast Air Basin (SoCAB). These changes lead to a predicted decrease in PM_(2.5) mass concentrations of ~0.3-0.7 μg mg~(-3) in the southern portion of the SJV and ~0.3-1.1 μg mg~(-3) along coastal regions of California including the heavily populated San Francisco Bay Area and the SoCAB surrounding Los Angeles. Annual average PM_(2.5) concentrations were predicted to increase at certain locations within the SJV and the Sacramento Valley (SV) due to the effects of climate change, but a corresponding analysis of the annual variability showed that these predictions are not statistically significant (i.e. the choice of a different 7-year period could produce a different outcome for these regions). Overall, virtually no region in California outside of coastal + central Los Angeles, and a small region around the port of Oakland in the San Francisco Bay Area experienced a statistically significant change in annual average PM_(2.5) concentrations due to the effects of climate change in the present study. The present study employs the highest spatial resolution (8 km) and the longest analysis windows (7 years) of any climate-air quality analysis conducted for California to date, but the results still have some degree of uncertainty. Most significantly, GCM calculations have inherent uncertainty that is not fully represented in the current study since a single GCM was used as the starting point for all calculations. The PCM results used in the current study predicted greater wintertime increases in air temperature over the Pacific Ocean than over land, further motivating comparison to other GCM results. Ensembles of GCM results are usually employed to build confidence in climate calculations.
机译:使用由全球模型到区域模型组成的气候-空气质量模型系统研究了加利福尼亚州全球气候变化对细颗粒物年平均浓度(PM_(2.5))的影响。在“照常营业”的全球排放情景下,NCAR / DOE平行气候模型(PCM)的输出已使用天气研究和预报(WRF)模型进行了缩减,然后使用UCD / CIT气域模型进行了空气质量模拟。该系统代表作用于气相和颗粒相物种的主要大气过程,包括对排放,对流,弥散,化学反应速率,气体颗粒转化和干/湿沉积的气象影响。在整个加利福尼亚州进行了空气质量模拟,其分辨率为2000-2006年(当前气候,当前排放量)和2047-2053(未来气候,当前排放量),分辨率为8 km。使用总共1008个模拟天来分析这7年分析周期中的每一个,以跨过与气候相关的时间段,并带有实际的计算负担。选择7年的窗口以适当地考虑年度变化,并具有额外的好处,即可以将当前气候下的空气质量预测与实际测量结果进行比较。气候空气质量建模系统成功地预测了加利福尼亚州当前气候PM_(2.5)浓度的空间格局,但在主要空气盆地中,年平均PM_(2.5)浓度的绝对幅度被低估了约4-39% 。这种低估的大部分是由PCM-WRF预测的过度通风引起的,在当前和未来时间段内应以相同的程度出现过度通风,以使引入比较的净偏差最小。在未来的气候中,预计地表温度,相对湿度(RH),降雨率和风速将增加,而在圣华金河谷(SJV)和南海岸的主要城市地区,紫外线(UV)辐射将减少空气盆(SoCAB)。这些变化导致SJV南部PM_(2.5)的质量浓度预计降低〜0.3-0.7μgmg〜(-3),而加利福尼亚沿海地区的PM_(2.5)质量浓度降低至〜0.3-1.1μgmg〜(-3)包括人口稠密的旧金山湾区和洛杉矶周围的SoCAB。由于气候变化的影响,SJV和萨克拉曼多谷(SV)内某些位置的年平均PM_(2.5)浓度预计会增加,但是对年度变化的相应分析表明,这些预测在统计上并不显着(即对于这些地区,选择不同的7年期限可能会产生不同的结果)。总体而言,由于气候变化的影响,加州几乎没有沿海和洛杉矶中部以外的地区,以及旧金山湾区奥克兰港附近的一小区域,年平均PM_(2.5)浓度发生了统计上显着的变化在目前的研究中。迄今为止,本研究采用了迄今为止加利福尼亚州进行的所有气候-空气质量分析中最高的空间分辨率(8 km)和最长的分析窗口(7年),但结果仍存在一定程度的不确定性。最重要的是,由于单个GCM用作所有计算的起点,因此GCM计算具有固有的不确定性,在当前的研究中并未完全体现出来。当前研究中使用的PCM结果预测,冬季太平洋上的气温升高将比陆地上的更高,这将进一步激发与其他GCM结果的比较。通常采用GCM结果集来建立对气候计算的信心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号