首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Climate impact on airborne particulate matter concentrations in California using seven year analysis periods
【24h】

Climate impact on airborne particulate matter concentrations in California using seven year analysis periods

机译:利用七年分析时期对加利福尼亚州的气候影响到加利福尼亚州的气候影响

获取原文
           

摘要

The effect of global climate change on the annual average concentration of fine particulate matter (PM2.5) in California was studied using a climate-air quality modeling system composed of global through regional models. Output from the NCAR/DOE Parallel Climate Model (PCM) generated under the "business as usual" global emissions scenario was downscaled using the Weather Research and Forecasting (WRF) model followed by air quality simulations using the UCD/CIT airshed model. The system represents major atmospheric processes acting on gas and particle phase species including meteorological effects on emissions, advection, dispersion, chemical reaction rates, gas-particle conversion, and dry/wet deposition. The air quality simulations were carried out for the entire state of California with a resolution of 8-km for the years 2000–2006 (present climate with present emissions) and 2047–2053 (future climate with present emissions). Each of these 7-year analysis periods was analyzed using a total of 1008 simulated days to span a climatologically relevant time period with a practical computational burden. The 7-year windows were chosen to properly account for annual variability with the added benefit that the air quality predictions under the present climate could be compared to actual measurements. The climate-air quality modeling system successfully predicted the spatial pattern of present climate PM2.5 concentrations in California but the absolute magnitude of the annual average PM2.5 concentrations were under-predicted by ~4–39% in the major air basins. The majority of this under-prediction was caused by excess ventilation predicted by PCM-WRF that should be present to the same degree in the current and future time periods so that the net bias introduced into the comparison is minimized. Surface temperature, relative humidity (RH), rain rate, and wind speed were predicted to increase in the future climate while the ultra violet (UV) radiation was predicted to decrease in major urban areas in the San Joaquin Valley (SJV) and South Coast Air Basin (SoCAB). These changes lead to a predicted decrease in PM2.5 mass concentrations of ~0.3–0.7 μg m?3 in the southern portion of the SJV and ~0.3–1.1 μg m?3 along coastal regions of California including the heavily populated San Francisco Bay Area and the SoCAB surrounding Los Angeles. Annual average PM2.5 concentrations were predicted to increase at certain locations within the SJV and the Sacramento Valley (SV) due to the effects of climate change, but a corresponding analysis of the annual variability showed that these predictions are not statistically significant (i.e. the choice of a different 7-year period could produce a different outcome for these regions). Overall, virtually no region in California outside of coastal + central Los Angeles, and a small region around the port of Oakland in the San Francisco Bay Area experienced a statistically significant change in annual average PM2.5 concentrations due to the effects of climate change in the present~study. The present study employs the highest spatial resolution (8 km) and the longest analysis windows (7 years) of any climate-air quality analysis conducted for California to date, but the results still have some degree of uncertainty. Most significantly, GCM calculations have inherent uncertainty that is not fully represented in the current study since a single GCM was used as the starting point for all calculations. The PCM results used in the current study predicted greater wintertime increases in air temperature over the Pacific Ocean than over land, further motivating comparison to other GCM results. Ensembles of GCM results are usually employed to build confidence in climate calculations. The current results provide a first data-point for the climate-air quality analysis that simultaneously employ the fine spatial resolution and long time scales needed to capture the behavior of climate-PM2.5 interactions in California. Future downscaling studies should follow up with a full ensemble of GCMs as their starting point, and include aerosol feedback effects on local meteorology.
机译:使用通过区域模式的全球组成的气候,空气质量模拟系统研究全球气候变化对加州细颗粒物(PM2.5)年均浓度的影响。从NCAR / DOE输出并行气候模式“照常经营”全球温室气体排放情景用的是天气研究缩小的和预报(WRF)模型,然后使用该UCD / CIT气域模型的空气质量模拟下产生的(PCM)。该系统代表作用在气相和颗粒相的物种,包括上排放,平流,分散体,化学反应速率,气体粒子的转换,以及干/湿沉积气象影响主要大气过程。空气质量模拟,加州为8公里为2000 - 2006年的分辨率(本气候与存在排放)和2047年至2053年(与存在的排放未来气候)的整个状态下进行。每个7年分析周期,使用共1008模拟天跨越了一个实用的计算负担气候学相关的时间段进行分析。在7年的窗户被选为正确计算年际变化与附加的好处是,目前的经济气候下的空气质量预测可能比实际测量。气候,空气质量模拟系统成功地预测当前气候PM2.5浓度在加利福尼亚州的空间格局,但全年平均浓度PM2.5的绝对量是由〜4-39%,在主要的空气盆地下预测。大多数此下预测的通过过量的换气用PCM-WRF预测,应存在以相同的程度在当前和未来时间段,使得引入所述比较的净偏压被最小化而引起的。表面温度,相对湿度(RH),降雨率和风速进行了预测未来气候增加,而在紫外线(UV)辐射预测在主要城市地区,以减少在圣华金谷(SJV)和南海岸空气盆地(SoCAB)。这些变化导致SJV和〜0.3-1.1微克毫升3沿加州海岸地区,包括人口密集的旧金山湾南部的部分在0.3-0.7〜微克毫升3的PM2.5质量浓度的预测下降地区和周边洛杉矶SoCAB。年平均PM2.5的浓度进行了预测,以加强该SJV和萨克拉门托河谷(SV),由于气候变化的影响内的特定位置,但年际变化的相应分析表明,这些预测都没有统计学显著(即不同的7年时间的选择可以产生这些地区不同的结果)。总体来看,在沿海+中央洛杉矶的加州以外几乎没有任何区域,并围绕奥克兰的旧金山湾区港口的一个小区域经历了年平均PM2.5浓度统计显著变化,由于气候变化的影响本研究〜。本研究采用的最高空间分辨率(8公里)和加州迄今所进行的任何气候条件下,空气质量分析的最长分析窗口(7岁),但结果还是有一定程度的不确定性。最显著,GCM计算有没有在目前的研究中,因为一个单一的GCM用作所有计算的出发点完全代表固有的不确定性。在目前的研究中使用的PCM的结果预测在空气下于太平洋比陆地上更大的冬季增加,进一步激励相比于其它GCM结果。 GCM结果的套装通常被用来建立气候计算的信心。目前的结果提供了第一个数据点用于环境空气质量分析认为,同时采用了精细的空间分辨率和捕捉加州气候PM2.5相互作用的行为需要较长时间尺度。未来的缩减研究应跟进大气环流模式为出发点的一个完整的整体,并包括本地气象气溶胶反馈效应。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号