...
首页> 外文期刊>Atmospheric chemistry and physics >Variability and budget of CO2 in Europe: Analysis of the CAATER airborne campaigns-Part 2: Comparison of CO2 vertical variability and fluxes between observations and a modeling framework
【24h】

Variability and budget of CO2 in Europe: Analysis of the CAATER airborne campaigns-Part 2: Comparison of CO2 vertical variability and fluxes between observations and a modeling framework

机译:欧洲CO2的波动性和预算:CAATER机载战役的分析-第2部分:观测值与模型框架之间的CO2垂直变化和通量比较

获取原文
获取原文并翻译 | 示例

摘要

Our ability to predict future climate change relies on our understanding of current and future CO2 fluxes, particularly on a regional scale (100-1000 km). CO2 regional sources and sinks are still poorly understood. Inverse transport modeling, a method often used to quantify these fluxes, relies on atmospheric CO2 measurements. One of the main challenges for the transport models used in the inversions is to properly reproduce CO2 vertical gradients between the boundary layer and the free troposphere, as these gradients impact on the partitioning of the calculated fluxes between the different model regions. Vertical CO2 profiles are very well suited to assess the performances of the models. In this paper, we conduct a comparison between observed and modeled CO2 profiles recorded during two CAATER campaigns that occurred in May 2001 and October 2002 over Western Europe, as described in a companion paper. We test different combinations between a global transport model (LMDZt), a mesoscale transport model (CHIMERE), and different sets of biospheric fluxes, all chosen with a diurnal cycle (CASA, SiB2 and ORCHIDEE). The vertical profile comparison shows that: 1) in most cases the influence of the biospheric flux is small but sometimes not negligible, ORCHIDEE giving the best results in the present study; 2) LMDZt is most of the time too diffuse, as it simulates a too high boundary layer height; 3) CHIMERE better reproduces the observed gradients between the boundary layer and the free troposphere, but is sometimes too variable and gives rise to incoherent structures. We conclude there is a need for more vertical profiles to conduct further studies to improve the parameterization of vertical transport in the models used for CO2 flux inversions. br> Furthermore, we use a modeling method to quantify CO2 fluxes at the regional scale from a chosen observing point, coupling influence functions from the transport model LMDZt (that works quite well at the synoptic scale) with information on the space-time distribution of fluxes. This modeling method is compared to a dual tracer method (the so-called Radon method) for a case study on 25 May 2001 during which simultaneous well-correlated in situ CO2 and Radon 222 measurements have been collected. Both methods give a similar result: a flux within the Radon 222 method uncertainty (35%), that is an atmospheric CO2 sink of '4.2 to 4.4 gC mg-2 day 1. We have estimated the uncertainty of the modeling method to be at least 33% on average, and even more for specific individual events. This method allows the determination of the area that contributed to the CO2 observed concentration. In our case, the observation point located at 1700 m a.s.l. in the north of France, is influenced by an area of 1500-700 km2 that covers the Benelux region, part of Germany and western Poland. Furthermore, this method allows deconvolution between the different contributing fluxes. In this case study, the biospheric sink contributes 73% of the total flux, fossil fuel emissions for 27%, the oceanic flux being negligible. However, the uncertainties of the influence function method need to be better assessed. This could be possible by applying it to other cases where the calculated fluxes can be checked independently, for example at tall towers where simultaneous CO 2 and Radon 222 measurements can be conducted. The use of optimized fluxes (from atmospheric inversions) and of mesoscale models for atmospheric transport may also significantly reduce the uncertainties.
机译:我们预测未来气候变化的能力取决于我们对当前和未来的CO2通量的理解,尤其是在区域范围内(100-1000 km)。二氧化碳的区域来源和汇流情况仍然知之甚少。逆向传输建模是一种常用于量化这些通量的方法,它依赖于大气中的CO2测量。反演中使用的输运模型的主要挑战之一是正确再现边界层和自由对流层之间的CO2垂直梯度,因为这些梯度影响不同模型区域之间计算通量的分配。垂直CO2曲线非常适合评估模型的性能。在本文中,我们对2001年5月和2002年10月在西欧发生的两次CAATER运动期间记录的观测CO2曲线和模拟CO2曲线进行了比较,如随附文件中所述。我们测试了全球运输模型(LMDZt),中尺度运输模型(CHIMERE)以及不同组的生物圈通量之间的不同组合,所有这些组合均通过昼夜周期选择(CASA,SiB2和ORCHIDEE)。垂直剖面比较显示:1)在大多数情况下,生物圈通量的影响很小,但有时不能忽略,ORCHIDEE在本研究中给出了最好的结果; 2)LMDZt在大多数情况下过于扩散,因为它模拟的边界层高度过高; 3)CHIMERE更好地再现了在边界层和自由对流层之间观察到的梯度,但有时变化太大并引起不连贯的结构。我们得出结论,需要更多的垂直剖面来进行进一步的研究,以改善用于CO2通量反演的模型中垂直输送的参数化。 br>此外,我们使用建模方法从选定的观测点量化区域尺度的CO2通量,将运输模型LMDZt的影响函数(在天气尺度上工作得很好)与关于时空分布的信息耦合。通量。在2001年5月25日的案例研究中,将此建模方法与双重示踪法(所谓的Radon方法)进行了比较,在该案例研究中,同时收集了相关的原位CO2和Radon 222测量值。两种方法都给出了相似的结果:Radon 222方法不确定性内的通量(35%),即大气中的CO2吸收量为'4.2至4.4 gC mg-2天1。我们估计建模方法的不确定性为平均至少33%,对于特定的个人事件甚至更高。这种方法可以确定有助于观察到CO2浓度的面积。在我们的案例中,观测点位于1700 m.s.l.在法国北部,面积为1500-700平方公里,覆盖比荷卢经济区,德国的一部分和波兰西部。此外,该方法允许在不同的贡献通量之间进行反卷积。在本案例研究中,生物圈汇占总通量的73%,化石燃料排放量占27%,海洋通量可忽略不计。但是,需要更好地评估影响函数方法的不确定性。通过将其应用于可以独立检查计算通量的其他情况,例如在可以同时进行CO 2和Radon 222测量的高塔上,可以实现此目的。使用优化通量(来自大气反演)和中尺度模型进行大气传输也可以大大减少不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号