首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Variability and budget of CO2 in Europe: analysis of the CAATER airborne campaigns – Part 2: Comparison of CO2 vertical variability and fluxes between observations and a modeling framework
【24h】

Variability and budget of CO2 in Europe: analysis of the CAATER airborne campaigns – Part 2: Comparison of CO2 vertical variability and fluxes between observations and a modeling framework

机译:欧洲二氧化碳的变异性和预算:凯斯特空中运动分析 - 第2部分:二氧化碳垂直变异性和观测之间的助势的比较和建模框架

获取原文
           

摘要

Our ability to predict future climate change relies on our understanding of current and future CO2 fluxes, particularly on a regional scale (100–1000 km). CO2 regional sources and sinks are still poorly understood. Inverse transport modeling, a method often used to quantify these fluxes, relies on atmospheric CO2 measurements. One of the main challenges for the transport models used in the inversions is to properly reproduce CO2 vertical gradients between the boundary layer and the free troposphere, as these gradients impact on the partitioning of the calculated fluxes between the different model regions. Vertical CO2 profiles are very well suited to assess the performances of the models. In this paper, we conduct a comparison between observed and modeled CO2 profiles recorded during two CAATER campaigns that occurred in May 2001 and October 2002 over Western Europe, as described in a companion paper. We test different combinations between a global transport model (LMDZt), a mesoscale transport model (CHIMERE), and different sets of biospheric fluxes, all chosen with a diurnal cycle (CASA, SiB2 and ORCHIDEE). The vertical profile comparison shows that: 1) in most cases the influence of the biospheric flux is small but sometimes not negligible, ORCHIDEE giving the best results in the present study; 2) LMDZt is most of the time too diffuse, as it simulates a too high boundary layer height; 3) CHIMERE better reproduces the observed gradients between the boundary layer and the free troposphere, but is sometimes too variable and gives rise to incoherent structures. We conclude there is a need for more vertical profiles to conduct further studies to improve the parameterization of vertical transport in the models used for CO2 flux inversions. Furthermore, we use a modeling method to quantify CO2 fluxes at the regional scale from a chosen observing point, coupling influence functions from the transport model LMDZt (that works quite well at the synoptic scale) with information on the space-time distribution of fluxes. This modeling method is compared to a dual tracer method (the so-called Radon method) for a case study on 25 May 2001 during which simultaneous well-correlated in situ CO2 and Radon 222 measurements have been collected. Both methods give a similar result: a flux within the Radon 222 method uncertainty (35%), that is an atmospheric CO2 sink of ?4.2 to ?4.4 gC m?2 day?1. We have estimated the uncertainty of the modeling method to be at least 33% on average, and even more for specific individual events. This method allows the determination of the area that contributed to the CO2 observed concentration. In our case, the observation point located at 1700 m a.s.l. in the north of France, is influenced by an area of 1500×700 km2 that covers the Benelux region, part of Germany and western Poland. Furthermore, this method allows deconvolution between the different contributing fluxes. In this case study, the biospheric sink contributes 73% of the total flux, fossil fuel emissions for 27%, the oceanic flux being negligible. However, the uncertainties of the influence function method need to be better assessed. This could be possible by applying it to other cases where the calculated fluxes can be checked independently, for example at tall towers where simultaneous CO2 and Radon 222 measurements can be conducted. The use of optimized fluxes (from atmospheric inversions) and of mesoscale models for atmospheric transport may also significantly reduce the uncertainties.
机译:我们预测未来气候变化的能力依赖于我们对当前和未来二氧化碳助势的理解,特别是在区域规模(100-1000公里)上。二氧化碳区域来源和汇率仍然清晰。逆传输建模,通常用于量化这些助熔剂的方法依赖于大气二氧化碳测量。作为这些梯度对不同模型区之间计算的通量的划分的影响,在边界层和自由对流层之间的运输模型的主要挑战之一是正确再现在边界层和自由层之间的二氧化碳垂直梯度。垂直二氧化碳曲线非常适合评估模型的性能。在本文中,我们在2001年5月和2002年5月在西欧发生的两个封装运动员中记录的观察和建模二氧化碳档案之间进行了比较,如伴侣纸上所述。我们在全局传输模型(LMDZT),Mescle Transport模型(Chimere)和不同的生物散势套之间测试不同的组合,所有这些都选择昼夜循环(Casa,Sib2和兰花)。垂直轮廓比较表明:1)在大多数情况下,生物助熔剂的影响很小,但有时不可忽略不可忽略,导轨在本研究中提供最佳结果; 2)LMDZT大部分时间过于弥漫,因为它模拟过高的边界层高度; 3)Chimere更好地再现边界层和自由对流层之间观察到的梯度,但有时候过于变化并导致非连贯的结构。我们得出需要更多的垂直轮廓来进行进一步的研究,以改善用于CO2磁通反转的模型中的垂直传输的参数化。此外,我们使用建模方法从所选观察点来定量区域尺度的CO2通量,从传输模型LMDZT耦合影响功能(在概要规模上很好地工作),其中有关于通量的时空分布的信息。将该建模方法与用于在2001年5月25日的案例研究的双跟踪方法(所谓的Radon方法)进行比较,在此期间已经收集了原位CO2和氡222测量的同时相关。两种方法都提供了类似的结果:氡222中的通量方法不确定(35%),即大气CO2槽的α.4.2〜4.4 gc m?2天?1。我们估计了建模方法的不确定性平均至少为33%,甚至更多的特定个人事件。该方法允许确定有助于CO2观察到的浓度的区域。在我们的情况下,观察点位于1700米A.L.在法国北部,受1500×700平方公里的面积,覆盖了德国和波兰的一部分。此外,该方法允许不同的贡献助条之间的去卷积。在这种情况下,生物渣占总助焊剂的73%,化石燃料排放为27%,海洋助焊剂可忽略不计。然而,需要更好地评估影响功能方法的不确定性。这可以通过将所计算的通量的其他情况应用于可以独立地检查计算的通量,例如可以在同时进行CO 2和氡222测量的高塔上进行。使用优化的助熔剂(来自大气倒置)和用于大气输送的Mescle模型也可能显着降低不确定性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号