...
首页> 外文期刊>Neural computing & applications >Hybrid deep learning diagonal recurrent neural network controller for nonlinear systems
【24h】

Hybrid deep learning diagonal recurrent neural network controller for nonlinear systems

机译:Hybrid deep learning diagonal recurrent neural network controller for nonlinear systems

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In the present paper, a hybrid deep learning diagonal recurrent neural network controller (HDL-DRNNC) is proposed for nonlinear systems. The proposed HDL-DRNNC structure consists of a diagonal recurrent neural network (DRNN), whose initial values can be obtained through deep learning (DL). The DL algorithm, which is used in this study, is a hybrid algorithm that is based on a self-organizing map of the Kohonen procedure and restricted Boltzmann machine. The updating weights of the DRNN of the proposed algorithm are developed using the Lyapunov stability criterion. In this concern, simulation tasks such as disturbance signals and parameter variations are performed on mathematical and physical systems to improve the performance and the robustness of the proposed controller. It is clear from the results that the performance of the proposed controller is better than other existent controllers.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号