...
首页> 外文期刊>Icarus: International Journal of Solar System Studies >Electrodynamic coupling of Jupiter's thermosphere and stratosphere: A new source of thermospheric heating?
【24h】

Electrodynamic coupling of Jupiter's thermosphere and stratosphere: A new source of thermospheric heating?

机译:木星热层与平流层的电动力耦合:热层加热的新来源吗?

获取原文
获取原文并翻译 | 示例
           

摘要

We investigate the vertical penetration of non-uniform electric fields in a planetary ionosphere. We develop a simple theoretical description of the vertical variation of electric fields with altitude in an ionosphere permeated with a vertical magnetic field. This framework is applied to the suggestion that winds in Jupiter's stratosphere could drive currents in the thermosphere. In particular, we propose that wind structures in the upper region of Jupiter's stratosphere (200-350km above the 1bar level) couple with the ionospheric plasma in this region to generate electric currents, some of which close by flowing vertically along magnetic field lines and then horizontally in the Pedersen conducting region of the thermosphere. These currents extract kinetic energy from the stratospheric winds and dissipate it, via Joule heating, as thermal energy in the thermosphere, thus providing a possible contribution to the observed high temperatures in this region. While the existence of significant wind structures in the upper stratosphere is speculative, the wind speeds that are required to generate significant heating (~100ms~(-1)) are not unreasonable in comparison to the observed tropospheric, lower stratospheric and thermospheric wind speeds. The scale size of the wind structures is critical to the degree of penetration of the induced electric fields. Wind structures with scale sizes less than ~10km do not generate electric fields that penetrate significantly into the thermosphere, while those with scale sizes of greater than ~100km (which includes very large, planetary-scale wind structures) generate electric fields that penetrate almost unmodified across the whole of the thermosphere. Sharp ionospheric layers or holes can prevent penetration of the electric fields to the thermosphere, doing so more effectively if they are of greater magnitude, of greater vertical width, or located at lower altitude. The timescale for damping of the stratospheric winds by ion drag is found to be strongly altitude-dependent, ranging from ~1 planetary rotation at 350km altitude to >100 planetary rotations at 200km altitude. The timescales also vary strongly with the nature and scale size of the wind structures. If the timescales of the processes driving stratospheric winds are longer than these timescales, then our mechanism will damp the winds almost to zero, and supply negligible energy to the thermosphere. We also discuss the possible relevance of our results to magnetosphere-ionosphere coupling in the auroral regions of Jupiter and other planets.
机译:我们研究行星电离层中非均匀电场的垂直穿透。我们建立了一个简单的理论描述,即电离层中垂直磁场的高度随电场的垂直变化。该框架适用于这样的建议:木星平流层中的风可以驱动热层中的电流。特别是,我们建议在木星平流层上部(高于1bar高度200-350km)的风结构与该区域的电离层等离子体耦合以产生电流,其中一些电流通过沿磁力线垂直流动而闭合,然后在热球的Pedersen传导区域中水平放置。这些电流从平流层风中提取动能,并通过焦耳加热将其消散,作为热层中的热能,从而为该地区观测到的高温提供了可能的贡献。尽管平流层上部存在明显的风结构是推测性的,但与观测到的对流层,低平流层和热层风速相比,产生大量热量所需的风速(〜100ms〜(-1))并非不合理。风结构的尺度大小对于感应电场的穿透程度至关重要。尺度尺寸小于〜10km的风结构不会产生明显渗透到热层的电场,而尺度尺寸大于〜100km的风结构(包括非常大的行星尺度风结构)所产生的电场几乎不会改变跨越整个热圈。尖锐的电离层或空穴可以防止电场穿透进入热层,如果它们的幅值更大,垂直宽度更大或位于较低的高度,则可以更有效地阻止这种穿透。发现通过离子阻力来衰减平流层风的时间尺度高度依赖于海拔,范围从350 km高度的〜1行星旋转到200 km高度的> 100行星旋转。时间尺度也随风结构的性质和尺度大小而变化很大。如果驱动平流层风的过程的时间尺度比这些时间尺度长,那么我们的机制将把风衰减到几乎为零,并向热圈提供微不足道的能量。我们还讨论了我们的结果与木星和其他行星的极光区域中磁层-电离层耦合的可能相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号