首页> 外文期刊>Icarus: International Journal of Solar System Studies >Magnetosphere-atmosphere coupling at Saturn: 1 - response of thermosphere and ionosphere to steady state polar forcing
【24h】

Magnetosphere-atmosphere coupling at Saturn: 1 - response of thermosphere and ionosphere to steady state polar forcing

机译:土星的磁层-大气耦合:1-热层和电离层对稳态极化强迫的响应

获取原文
获取原文并翻译 | 示例
           

摘要

We present comprehensive calculations of the steady state response of Saturn's coupled thermosphere-ionosphere to forcing by solar radiation, magnetospheric energetic electron precipitation and high latitude electric fields caused by sub-corotation of magnetospheric plasma. Significant additions to the physical processes calculated in our Saturn Thermosphere Ionosphere General Circulation Model (STIM-GCM) include the comprehensive and self-consistent treatment of neutral-ion dynamical coupling and the use of self-consistently calculated rates of plasma production from incident energetic electrons. Our simulations successfully reproduce the observed high latitude temperatures as well as the latitudinal variations of ionospheric peak electron densities that have been observed by the Cassini Radio Science Subsystem experiment (RSS). We find magnetospheric energy deposition to strongly control the flow of mass and energy in the high and mid-latitude thermosphere and thermospheric dynamics to play a crucial role in driving this flow, highlighting the importance of including dynamics in any high latitude energy balance studies on Saturn and other Gas Giants. By relating observed H3+ column emissions and temperatures to the same quantities inferred from simulated atmosphere profiles we identify a potential method of better constraining the still unknown abundance of vibrationally excited H _2 which strongly affects the H3+ densities. Our calculations also suggest that local time variability in H3+ column emission flux may be largely driven by local time changes of H3+ densities rather than temperatures. By exploring the parameter space of possible high latitude electric field strengths and incident energetic electron fluxes, we determine the response of thermospheric polar temperatures to a range of these magnetospheric forcing parameters, illustrating that 10keV electron fluxes of 0.1-1.2mWm ~(-2) in combination with electric field strengths of 80-100mVm ~(-1) produce H3+ emissions consistent with observations. Our calculations highlight the importance of considering thermospheric temperatures as one of the constraints when examining the state of Saturn's magnetosphere and its coupling to the upper atmosphere.
机译:我们对土星耦合的热球-电离层对太阳辐射,磁层高能电子沉淀和磁层等离子副旋转引起的高纬度电场强迫的稳态响应进行了综合计算。在我们的土星热层电离层总循环模型(STIM-GCM)中计算的物理过程的重要补充包括对中性离子动态耦合的全面且自洽的处理,以及使用自洽计算的入射高能电子产生等离子体的速率。我们的模拟成功地再现了卡西尼航空科学子系统实验(RSS)所观测到的高纬度温度以及电离层峰值电子密度的纬度变化。我们发现磁层能量沉积可以强烈控制高纬度和中纬度热层中的质量和能量流,而热层动力学在驱动这一流中起着至关重要的作用,从而强调了在土星上进行的任何高纬度能量平衡研究中都应包括动力学的重要性和其他天然气巨人。通过将观察到的H3 +色谱柱的排放量和温度与模拟大气分布推断出的相同数量相关联,我们确定了一种更好地限制仍然强烈振动H3 +密度的仍然未知的振动激发H _2丰度的潜在方法。我们的计算还表明,H3 +色谱柱排放通量的局部时间变化可能很大程度上是由H3 +浓度的局部时间变化而非温度引起的。通过探索可能的高纬度电场强度和入射高能电子通量的参数空间,我们确定了热球极温度对这些磁层强迫参数范围的响应,说明了10keV电子通量为0.1-1.2mWm〜(-2)结合80-100mVm〜(-1)的电场强度,产生与观察结果一致的H3 +排放。我们的计算突显了在检查土星磁层状态及其与高层大气耦合时,将热层温度视为约束条件之一的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号