...
首页> 外文期刊>Biodegradation >Contribution of quinone-reducing microorganisms to the anaerobic biodegradation of organic compounds under different redox conditions.
【24h】

Contribution of quinone-reducing microorganisms to the anaerobic biodegradation of organic compounds under different redox conditions.

机译:在不同的氧化还原条件下,还原醌的微生物对有机化合物的厌氧生物降解的贡献。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The capacity of two anaerobic consortia to oxidize different organic compounds, including acetate, propionate, lactate, phenol and p-cresol, in the presence of nitrate, sulfate and the humic model compound, anthraquinone-2,6-disulfonate (AQDS) as terminal electron acceptors, was evaluated. Denitrification showed the highest respiratory rates in both consortia studied and occurred exclusively during the first hours of incubation for most organic substrates degraded. Reduction of AQDS and sulfate generally started after complete denitrification, or even occurred at the same time during the biodegradation of p-cresol, in anaerobic sludge incubations; whereas methanogenesis did not significantly occur during the reduction of nitrate, sulfate, and AQDS. AQDS reduction was the preferred respiratory pathway over sulfate reduction and methanogenesis during the anaerobic oxidation of most organic substrates by the anaerobic sludge studied. In contrast, sulfate reduction out-competed AQDS reduction during incubations performed with anaerobic wetland sediment, which did not achieve any methanogenic activity. Propionate was a poor electron donor to achieve AQDS reduction; however, denitrifying and sulfate-reducing activities carried out by both consortia promoted the reduction of AQDS via acetate accumulated from propionate oxidation. Our results suggest that microbial reduction of humic substances (HS) may play an important role during the anaerobic oxidation of organic pollutants in anaerobic environments despite the presence of alternative electron acceptors, such as sulfate and nitrate. Methane inhibition, imposed by the inclusion of AQDS as terminal electron acceptor, suggests that microbial reduction of HS may also have important implications on the global climate preservation, considering the green-house effects of methane.
机译:在存在硝酸盐,硫酸盐和腐殖酸模型化合物蒽醌-2,6的情况下,两个厌氧财团氧化不同有机化合物(包括乙酸盐,丙酸盐,乳酸盐,苯酚和 p-甲酚)的能力。评价了作为末端​​电子受体的-二磺酸盐(AQDS)。反硝化作用在两个研究的联合体中均显示出最高的呼吸速率,并且仅在孵化的最初几个小时内发生,大多数降解的有机底物均发生。在厌氧污泥培养中,AQDS和硫酸盐的还原通常在完全反硝化后开始,甚至在 p 甲酚的生物降解过程中同时发生。而在硝酸盐,硫酸盐和AQDS的还原过程中甲烷生成没有明显发生。在研究的厌氧污泥对大多数有机底物进行厌氧氧化过程中,相比于硫酸盐还原和甲烷生成,AQDS还原是首选的呼吸途径。相反,在与厌氧湿地沉积物进行温育期间,硫酸盐的还原胜过了AQDS的还原,而这没有实现任何产甲烷活性。丙酸酯是实现AQDS降低的不良电子供体。然而,两个财团进行的反硝化和硫酸盐还原活动通过丙酸氧化积累的乙酸盐促进了AQDS的还原。我们的研究结果表明,尽管存在其他电子受体(例如硫酸盐和硝酸盐),但在厌氧环境中有机污染物的厌氧氧化过程中,腐殖质(HS)的微生物还原仍可能发挥重要作用。考虑到甲烷的温室效应,通过将AQDS用作末端电子受体而抑制了甲烷,这表明HS的微生物减少也可能对全球气候保护产生重要影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号