...
首页> 外文期刊>Neural computing & applications >Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques
【24h】

Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques

机译:Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper investigates the ability of four artificial intelligence techniques, including artificial neural network (ANN), radial basis neural network (RBNN), adaptive neuro-fuzzy inference system (ANFIS) with grid partitioning, and ANFIS with fuzzy c-means clustering, to predict the peak and residual conditions of actively confined concrete. A large experimental test database that consists of 377 axial compression test results of actively confined concrete specimens was assembled from the published literature, and it was used to train, test, and validate the four models proposed in this paper using the mentioned artificial intelligence techniques. The results show that all of the neural network and ANFIS models fit well with the experimental results, and they outperform the conventional models. Among the artificial intelligence models investigated, RBNN model is found to be the most accurate to predict the peak and residual conditions of actively confined concrete. The predictions of each proposed model are subsequently used to study the interdependence of critical parameters and their influence on the behavior of actively confined concrete.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号