首页> 外文期刊>Annals of Physics >Duality in 2+1D quantum elasticity: superconductivity and quantum nematic order
【24h】

Duality in 2+1D quantum elasticity: superconductivity and quantum nematic order

机译:2 + 1D量子弹性中的对偶性:超导性和量子向列序

获取原文
       

摘要

Superfluidity and superconductivity are traditionally understood in terms of an adiabatic continuation from the Bose-gas limit. Here we demonstrate that at least in a 2 + 1D Bose system, superfluidity can arise in a strict quantum field-theoretic setting. Taking the theory of quantum elasticity (describing phonons) as a literal quantum field theory with a bosonic statistic, superfluidity and superconductivity (in the EM charged case) emerge automatically when the shear rigidity of the elastic state is destroyed by the proliferation of topological defects (quantum dislocations). Off-diagonal long range order in terms of the field operators of the constituent particles is not required. This is one of the outcomes of the broader pursuit presented in this paper. In essence, it amounts to the generalization of the well known theory of crystal melting in two dimensions by Nelson et al. [Phys. Rev. B 19 (1979) 2457; Phys. Rev. B 19 (1979) 1855], to the dynamical theory of bosonic states exhibiting quantum liquid-crystalline orders in 2 + 1 dimensions. We strongly rest on the field-theoretic formalism developed by Kleinert [Gauge fields in Condensed Matter, vol. II: Stresses and Defects, Differential Geometry, Crystal Defects, World Scientific, Singapore, 1989] for classical melting in 3D. Within this framework, the disordered states correspond to Bose condensates of the topological excitations, coupled to gauge fields describing the capacity of the elastic medium to propagate stresses. Our focus is primarily on the nematic states, corresponding with condensates of dislocations, under the topological condition that disclinations remain massive. The dislocations carry Burgers vectors as topological charges. Conventional nematic order, i.e., the breaking of space-rotations, corresponds in this field-theoretic duality framework with an ordering of the Burgers vectors. However, we also demonstrate that the Burgers vectors can quantum disorder despite the massive character of the disclinations. We identify the physical nature of the 'Coulomb nematic' suggested by Lammert et al. [Phys. Rev. Lett. 70 (1993) 1650; Phys. Rev. E 52 (1995) 1778] on gauge-theoretical grounds. The 2 + 1D quantum liquid crystals differ in fundamental regards from their 3D classical counterparts due to the presence of a dynamical constraint. This constraint is the glide principle, well known from metallurgy, which states that dislocations can only propagate in the direction of their Burgers vector. In the present framework this principle plays a central role. This constraint is necessary to decouple compression rigidity from the dislocation condensate. The shear rigidity is not protected, and as a result the shear modes acquire a Higgs mass in the dual condensate. This is the way the dictum that translational symmetry breaking goes hand in hand with shear rigidity emerges in the field theory. However, because of the glide principle compression stays massless, and the fluids are characterized by an isolated massless compression mode and are therefore superfluids. Glide also causes the shear Higgs mass to vanish at orientations perpendicular to the director in the ordered nematic, and the resulting state can be viewed as a quantum smectic of a novel kind. Our most spectacular result is a new hydrodynamical way of understanding the conventional electromagnetic Meissner state (superconducting state). Generalizing to the electromagnetically charged elastic medium ('Wigner Crystal') we find that the Higgs mass of the shear gauge fields, becoming finite in the nematic quantum fluids, automatically causes a Higgs mass in the electromagnetic sector by a novel mechanism. (C) 2003 Elsevier Inc. All rights reserved. [References: 68]
机译:传统上,超流体和超导电性是根据玻色气体极限的绝热延续来理解的。在这里,我们证明至少在2 + 1D Bose系统中,在严格的量子场理论环境中会出现超流。将量子弹性理论(描述声子)作为具有玻色子统计量的字面量子场论,当弹性态的剪切刚度被拓扑缺陷的扩散破坏时,超流体和超导电性(在EM带电情况下)自动出现(量子位错)。就组成粒子的场算子而言,不需要非对角的远距离顺序。这是本文提出的更广泛追求的结果之一。从本质上讲,它等于纳尔逊(Nelson)等人对二维晶体熔化理论的概括。 [物理B 19版(1979)2457;物理Rev. B 19(1979)1855],讨论了以2 +1维表示量子液晶级的玻态的动力学理论。我们坚决依靠Kleinert [凝聚态的规范场,vol。 II:应力和缺陷,微分几何,晶体缺陷,世界科学,新加坡,1989年],用于3D经典熔化。在此框架内,无序状态对应于拓扑激发的玻色凝结,并与描述弹性介质传播应力的能力的规范场耦合。我们的重点主要是向错状态,在位错仍然大量存在的拓扑条件下,与位错的凝结物相对应。位错携带Burgers向量作为拓扑电荷。传统的向列顺序,即空间旋转的中断,在这种场论对偶框架中与Burgers向量的顺序相对应。然而,我们也证明了尽管定向的巨大特征,Burgers向量仍可以量子无序。我们确定了Lammert等人建议的“库仑向列”的物理性质。 [物理莱特牧师70(1993)1650;物理E. 52(1995)1778]。由于存在动态约束,因此2 + 1D量子液晶在基本方面与3D经典液晶不同。这种限制是滑移原理,这是冶金学众所周知的原理,它指出位错只能在其Burgers向量的方向上传播。在目前的框架中,这一原则起着核心作用。为了使压缩刚度与位错冷凝物脱钩,此约束是必需的。剪切刚度得不到保护,结果剪切模式在双重冷凝物中获得了希格斯质量。这就是场论提出平移对称性破裂与剪切刚度齐头并进的格言的方式。但是,由于采用滑行原理,压缩保持无质量,并且流体的特征在于隔离的无质量压缩模式,因此是超流体。滑移还会使剪切希格斯质量在有序向列中的垂直于指向矢的方向上消失,并且所产生的状态可以看作是一种新型的量子近晶。我们最引人注目的结果是了解常规电磁迈斯纳状态(超导状态)的新型流体动力学方法。归纳到电磁带电的弹性介质(“维格纳晶体”),我们发现,在向列量子流体中变得有限的剪切应变场的希格斯质量通过一种新颖的机制自动在电磁扇区中引起了希格斯质量。 (C)2003 Elsevier Inc.保留所有权利。 [参考:68]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号