首页> 外文期刊>Brain: A journal of neurology >NaV1.4 mutations cause hypokalaemic periodic paralysis by disrupting IIIS4 movement during recovery
【24h】

NaV1.4 mutations cause hypokalaemic periodic paralysis by disrupting IIIS4 movement during recovery

机译:NaV1.4突变通过恢复过程中破坏IIIS4运动而引起低钾血症性周期性麻痹

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Hypokalaemic periodic paralysis is typically associated with mutations of voltage sensor residues in calcium or sodium channels of skeletal muscle. To date, causative sodium channel mutations have been studied only for the two outermost arginine residues in S4 voltage sensor segments of domains I to III. These mutations produce depolarization of skeletal muscle fibres in response to reduced extracellular potassium, owing to an inward cation-selective gating pore current activated by hyperpolarization. Here, we describe mutations of the third arginine, R3, in the domain III voltage sensor i.e. an R1135H mutation which was found in two patients in separate families and a novel R1135C mutation identified in a third patient in another family. Muscle fibres from a patient harbouring the R1135H mutation showed increased depolarization tendency at normal and reduced extracellular potassium compatible with the diagnosis. Additionally, amplitude and rise time of action potentials were reduced compared with controls, even for holding potentials at which all NaV1.4 are fully recovered from inactivation. These findings may be because of an outward omega current activated at positive potentials. Expression of R1135H/C in mammalian cells indicates further gating defects that include significantly enhanced entry into inactivation and prolonged recovery that may additionally contribute to action potential inhibition at the physiological resting potential. After S4 immobilization in the outward position, mutant channels produce an inward omega current that most likely depolarizes the resting potential and produces the hypokalaemia-induced weakness. Gating current recordings reveal that mutations at R3 inhibit S4 deactivation before recovery, and molecular dynamics simulations suggest that this defect is caused by disrupted interactions of domain III S2 countercharges with S4 arginines R2 to R4 during repolarization of the membrane. This work reveals a novel mechanism of disrupted S4 translocation for hypokalaemic periodic paralysis mutations at arginine residues located below the gating pore constriction of the voltage sensor module.
机译:低血钾性周期性麻痹通常与骨骼肌钙或钠通道中电压传感器残基的突变有关。迄今为止,仅针对结构域I至III的S4电压传感器片段中两个最外面的精氨酸残基研究了致病性钠通道突变。这些突变由于减少的细胞外钾而产生骨骼肌纤维的去极化,这归因于由超极化激活的内向阳离子选择性门控孔电流。在这里,我们描述了域III电压传感器中第三个精氨酸R3的突变,即在单独家庭中的两名患者中发现的R1135H突变和在另一个家族中的第三名患者中发现的新型R1135C突变。携带R1135H突变的患者的肌纤维在正常情况下显示增加的去极化趋势,并减少与诊断相符的细胞外钾离子。另外,与对照相比,动作电位的幅度和上升时间也减少了,即使对于保持所有NaV1.4从灭活中完全恢复的电位而言。这些发现可能是由于在正电位激活了向外的欧米伽电流。 R1135H / C在哺乳动物细胞中的表达表明存在进一步的门控缺陷,包括显着增强的进入失活状态和延长的恢复时间,这可能还有助于在生理静息电位上抑制动作电位。在将S4固定在向外位置后,突变体通道会产生向内的欧米伽电流,该电流很可能使静息电位去极化并产生低钾血症诱导的虚弱。门控电流记录显示,R3处的突变会在恢复之前抑制S4失活,并且分子动力学模拟表明,该缺陷是由膜III极化过程中,结构域III S2的反电荷与S4精氨酸R2与R4之间的相互作用破坏引起的。这项工作揭示了位于电压传感器模块选通孔收缩下方的精氨酸残基处的低钾血症周期性麻痹突变导致S4易位的新机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号