...
首页> 外文期刊>Astrophysics and space science >The excitation of planetary orbits by stellar jet variability and polarity reversal
【24h】

The excitation of planetary orbits by stellar jet variability and polarity reversal

机译:恒星射流变率和极性反转激发行星轨道

获取原文
获取原文并翻译 | 示例

摘要

Planets form in active protoplanetary disks that sustain stellar jets. Momentum loss from the jet system may excite the planets' orbital eccentricity and inclination (Namouni in Astron. J. 130:280, 2005). Evaluating quantitatively the effects of such excitation requires a realistic modeling of the momentum loss profiles associated with stellar jets. In this work, we model linear momentum loss as a time-variable stochastic process that results in a zero mean stellar acceleration. Momentum loss may involve periodic or random polarity reversals. We characterize orbital excitation as a function of the variability timescale and identify a novel excitation resonance between a planet's orbital period and the jet's variability timescale where the former equals twice the latter. For constant variability timescales, resonance is efficient for both periodic and random polarity reversals, the latter being stronger than the former. For a time variable variability timescale, resonance crossing is a more efficient excitation mechanism when polarity reversals are periodic. Each polarity reversal type has distinct features that may help constrain the magnetic history of the star through the observation of its planetary companions. For instance, outward planet migration to large distances from parent stars is one of the natural outcomes of periodic polarity reversal excitation if resonance crossing is sufficiently slow. Applying the excitation mechanism to the solar system, we find that the planet-jet variability resonance with periodic polarity reversal momentum loss is a possible origin for the hitherto unexplained inclination of Jupiter's orbit by 6{ring operator} with respect to the Sun's equator.
机译:行星形成维持恒星喷射的活动原行星盘。射流系统的动量损失可能会激发行星的轨道偏心率和倾斜度(Namouni in Astron。J. 130:280,2005)。定量评估这种激发的影响需要对与恒星喷射相关的动量损失曲线进行逼真的建模。在这项工作中,我们将线性动量损失建模为随时间变化的随机过程,该过程导致平均恒星加速度为零。动量损失可能涉及周期性或随机极性反转。我们将轨道激发定性为可变性时标的函数,并确定行星的轨道周期与射流的可变性时标之间的新型激发共振,其中前者等于后者的两倍。对于恒定的可变时标,共振对于周期性和随机极性反转都是有效的,后者比前者更强。对于时间可变的时标,当极性反转为周期性时,共振交叉是一种更有效的激励机制。每种极性反转类型均具有独特的特征,可通过观察其行星伴星来帮助限制恒星的磁历史。例如,如果共振穿越足够慢,向外行星迁移到距母恒星较远的距离是周期性极性反转激发的自然结果之一。将激发机制应用于太阳系,我们发现具有周期性极性反转动量损失的行星喷流可变性共振可能是迄今无法解释的木星轨道相对于太阳赤道的6 {环算子}倾斜的可能原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号