...
首页> 外文期刊>Astroparticle physics >An optical readout system for the drag free control of the LISA spacecraft
【24h】

An optical readout system for the drag free control of the LISA spacecraft

机译:光学读出系统,用于LISA航天器的无阻力控制

获取原文
获取原文并翻译 | 示例

摘要

LISA is an ESA-NASA joint project for the realization of a space interferometric gravitational wave (GW) antenna. LISA is designed for the measurement of GWs in a very low frequency band (0.1-100 mHz). The antenna is composed by three spacecraft (SC) in suitable heliocentric orbits placed at the corners of a huge equilateral triangle, each side being 5 million km long. The SCs are linked by lasers, forming a sort of optical transponder. By means of phase locking techniques, any round-trip phase delay change gives a measurement of a change in the SC distance (measured as light transit time), due to incoming GWs. An essential requirement is that the SCs are set as close as possible to pure geodetic motion, in the measurement frequency band. This is hardly fulfilled because the SCs are disturbed by several external forces, like solar radiation pressure, cosmic rays etc. In each SC there are two free falling proof masses (PM) that are as much isolated as possible by all external force but gravity. The relative position between each PM and the SC is measured, in six degrees of freedom, by the so-called inertial sensor (IS). The IS signal is then used for drag-free servo-loops that force the SC to follow the geodetic motion of the PMs. The current solution for the IS is the adoption of capacitive sensing. This gives a reliable device but poses several limitations due to back action and cross couplings. In this work, we present an optical lever sensor as an alternative solution. In particular we analyze the potential sensitivity and discuss the advantages in terms of relaxed specifications for the drag free control loops. We also report on bench-top measurements that confirm the performance in the required frequency band.
机译:LISA是ESA-NASA的一个联合项目,用于实现空间干涉重力波(GW)天线。 LISA专为在非常低的频带(0.1-100 mHz)中测量GW而设计。天线由三个航天器(SC)组成,它们分别位于一个大的等边三角形的角上,并以适当的日心轨道运行,每边长500万公里。 SC通过激光链接,形成一种光学转发器。借助锁相技术,由于传入的GW,任何往返相位延迟变化都可以测量SC距离的变化(以光传输时间衡量)。一个基本要求是,在测量频带中,将SC设置为尽可能接近纯大地运动。由于SC受到太阳辐射压力,宇宙射线等几种外力的干扰,因此很难实现。在每个SC中,有两个自由下落的防坠落质量块(PM),它们被重力和重力完全隔离。每个PM和SC之间的相对位置由六个惯性测量,即所谓的惯性传感器(IS)。然后将IS信号用于无阻力伺服环路,该环路迫使SC跟随PM的大地运动。 IS的当前解决方案是采用电容感应。这提供了一种可靠的设备,但是由于反向作用和交叉耦合而造成了一些限制。在这项工作中,我们提出了一种光学杠杆传感器作为替代解决方案。特别是,我们分析了潜在的灵敏度并讨论了针对无阻力控制回路的宽松规范方面的优势。我们还会报告台式测量结果,这些测量结果可确认所需频段内的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号