...
首页> 外文期刊>Astrophysics and space science >Discussion on the spectral coherence between planetary, solar and climate oscillations: a reply to some critiques
【24h】

Discussion on the spectral coherence between planetary, solar and climate oscillations: a reply to some critiques

机译:讨论行星,太阳和气候振荡之间的光谱相干性:对某些批评的答复

获取原文
获取原文并翻译 | 示例

摘要

During the last few years a number of works have proposed that planetary harmonics regulate solar oscillations. Also the Earth's climate seems to present a signature of multiple astronomical harmonics. Herein I address some critiques claiming that planetary harmonics would not appear in the data. I will show that careful and improved analysis of the available data do support the planetary theory of solar and climate variation also in the critiqued cases. In particular, I show that: (1) high-resolution cosmogenic Be-10 and C-14 solar activity proxy records both during the Holocene and during the Marine Interglacial Stage 9.3 (MIS 9.3), 325-336 kyear ago, present four common spectral peaks (confidence level a(a)dagger 95 %) at about 103, 115, 130 and 150 years (this is the frequency band that generates Maunder and Dalton like grand solar minima) that can be deduced from a simple solar model based on a generic non-linear coupling between planetary and solar harmonics; (2) time-frequency analysis and advanced minimum variance distortion-less response (MVDR) magnitude squared coherence analysis confirm the existence of persistent astronomical harmonics in the climate records at the decadal and multidecadal scales when used with an appropriate window lenght (La parts per thousand 110 years) to guarantee a sufficient spectral resolution to solve at least the major astronomical harmonics. The optimum theoretical window length deducible from astronomical considerations alone is, however, La-a dagger 178.4 years because the planetary frequencies are harmonics of such a period. However, this length is larger than the available 164-year temperature signal. Thus, the best coherence test can be currently made only using a single window as long as the temperature instrumental record and comparing directly the temperature and astronomical spectra as done in Scafetta (J. Atmos. Sol. Terr. Phys. 72(13):951-970, 2010) and reconfirmed here. The existence of a spectral coherence between planetary, solar and climatic oscillations is confirmed at the following periods: 5.2 year, 5.93 year, 6.62 year, 7.42 year, 9.1 year (main lunar tidal cycle), 10.4 year (related to the 9.93-10.87-11.86 year solar cycle harmonics), 13.8-15.0 year, similar to 20 year, similar to 30 year and similar to 61 year, 103 year, 115 year, 130 year, 150 year and about 1000 year. This work responds to the critiques of Cauquoin et al. (Astron. Astrophys. 561:A132, 2014), who ignored alternative planetary theories of solar variations, and of Holm (J. Atmos. Sol. Terr. Phys. 110-111:23-27, 2014a), who used inadequate physical and time frequency analyses of the data.
机译:在最近几年中,许多工作提出了行星谐波调节太阳振荡。同样,地球的气候似乎也呈现出多种天文谐波的特征。在这里,我提出一些批评,声称行星谐波不会出现在数据中。我将证明,在受到批评的情况下,对可用数据的仔细和改进的分析的确支持了太阳和气候变化的行星理论。我特别指出:(1)在325-336年前的全新世和海洋间冰期9.3(MIS 9.3)期间,高分辨率的宇宙成因的Be-10和C-14太阳活动代用记录呈现四种常见的光谱峰值(置信度a(a)dagger为95%)出现在大约103、115、130和150年(这是产生Maunder和Dalton的频带,就像大太阳的最小值一样),可以根据以下公式得出一个简单的太阳模型:行星谐波和太阳谐波之间的一般非线性耦合; (2)时频分析和高级最小方差无失真响应(MVDR)幅度平方相干分析确定了当使用适当的窗口长度时,气候记录中以十年和多十年尺度存在持续天文谐波(一千零一十年)以确保有足够的光谱分辨率来解决至少主要的天文谐波。但是,仅从天文学考虑就可以得出的最佳理论窗长为La-a dagger 178.4年,因为行星频率是该周期的谐波。但是,此长度大于可用的164年温度信号。因此,目前最好仅使用单个窗口进行最佳相干性测试,只要使用温度仪表记录并直接比较温度和天文光谱(如Scafetta所做的那样)(J.Atmos.Sol.Terr.Phys.72(13): 951-970,2010)并在此处再次确认。在以下时期确认了行星,太阳和气候振荡之间存在光谱一致性:5.2年,5.93年,6.62年,7.42年,9.1年(主月潮周期),10.4年(与9.93-10.87相关)太阳周期谐波为-11.86年),13.8-15.0年,近似20年,近似30年和近似61年,103年,115年,130年,150年和大约1000年。这项工作回应了对考柯因等人的批评。 (Astron。Astrophys。561:A132,2014),他们忽略了太阳和霍尔姆的另类行星理论(J. Atmos。Sol。Terr。Phys。110-111:23-27,2014a),他们使用了不适当的物理方法数据的时间频率分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号