首页> 外文期刊>ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B. Mechanical Engineering >How Does Concrete Affect Evaporation of Cryogenic Liquids: Evaluating Liquefied Natural Gas Plant Safety
【24h】

How Does Concrete Affect Evaporation of Cryogenic Liquids: Evaluating Liquefied Natural Gas Plant Safety

机译:混凝土如何影响低温液体的蒸发:评估液化天然气工厂的安全性

获取原文
获取原文并翻译 | 示例
           

摘要

With the impending natural gas boom in the United States, many companies are pursuing Department of Energy (DOE) approval for exporting liquefied natural gas (LNG), which is a cryogenic liquid. The next decade also promises to demonstrate growth in LNG-fueled fleets of vehicles and marine vessels, as well as growth in other natural gas uses. The future expansion in the LNG infrastructure will lead to an increased focus on managing the risks associated with spills of LNG. Risk analysis involving LNG spill scenarios and their consequences requires determining the size of resulting ignitable flammable vapor clouds. This in turn depends strongly on the rate of evaporation of the spilled LNG. The evaporation of a cryogenic LNG spill (and thus the flammable vapor cloud hazard) can be quite a complex process, and it is primarily controlled by the rate of spreading of the pool and by the transient conductive heat transfer from the ground to the spilled liquid. Radiative and convective heat transfer are also present, but the conductive heat transfer rate dominates in the evaporation of a cryogenic liquid spilled into a trench or sump initially at ambient temperature. The time-dependent evaporation rate can be calculated using a variety of models, such as the built-in model in PHAST Det Norske Veritas (DNV) or other proprietary models that account for pool spreading, heat conduction within the substrate, and phase change. Trenches and sumps used to contain LNG spills are normally lined with various types of concrete, including insulated or aerated concrete. The authors have found that for a cryogenic liquid, the choice of thermal properties for concrete can greatly affect the source term. This paper presents a sensitivity study of the effects of substrate properties on the evaporation rate of LNG. The study will look at the dependence for a range of sump diameters. The PHAST model results will be compared to results obtained using an inhouse shallow water equation (SWE) liquid propagation and heat transfer model. The results of the paper will provide guidance for the selection of substrate properties during modeling as well as a comparison of the relative evaporation rates expected for different surfaces, such as regular concrete and insulated concrete.
机译:随着美国即将到来的天然气热潮,许多公司正在寻求能源部(DOE)的批准,以出口液化天然气(LNG),这是一种低温液体。未来十年还有望展示LNG燃料的车辆和轮船舰队的增长,以及其他天然气用途的增长。液化天然气基础设施的未来扩展将导致人们更加关注管理与液化天然气泄漏相关的风险。涉及LNG泄漏情景及其后果的风险分析需要确定产生的可燃易燃蒸气云的大小。这又很大程度上取决于泄漏的液化天然气的蒸发速率。低温LNG溢出物的蒸发(因此易燃的蒸气云危害)可能是一个非常复杂的过程,并且主要由池的扩散速率和从地面到溢出液体的瞬时传导性热传递来控制。 。还存在辐射和对流传热,但是传导性传热速率在最初在环境温度下溢出到沟槽或集水槽中的低温液体的蒸发中占主导地位。可以使用多种模型来计算随时间变化的蒸发速率,例如PHAST Det Norske Veritas(DNV)的内置模型或其他专有模型,这些模型可以解释池扩散,基板内的热传导和相变。通常,用于容纳LNG泄漏的沟槽和集水槽衬有各种类型的混凝土,包括绝缘或加气混凝土。作者发现,对于低温液体,混凝土热性能的选择会极大地影响源术语。本文提出了对基底性质对LNG蒸发速率影响的敏感性研究。该研究将着眼于一定范围的集水坑直径。将PHAST模型的结果与使用内部浅水方程(SWE)液体传播和传热模型获得的结果进行比较。本文的结果将为建模期间选择基材特性提供指导,并为不同表面(例如普通混凝土和绝缘混凝土)的预期相对蒸发速率进行比较提供指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号