首页> 外文期刊>Advanced Sustainable Systems >Unraveling Structural Carboxyl Defects in g‐C3N4 for Improved Photocatalytic H2 Evolution via Alternating Hydrogen‐Oxygen‐Plasma Treatment
【24h】

Unraveling Structural Carboxyl Defects in g‐C3N4 for Improved Photocatalytic H2 Evolution via Alternating Hydrogen‐Oxygen‐Plasma Treatment

机译:揭示g-C3N4结构羧基缺陷,通过氢氧等离子体交替处理改善光催化H2析出

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Abstract Structural defect‐endowed photocatalysts are being increasingly recognized due to the enhanced catalytic activity of multiple defect sites (e.g., vacancies or functional groups). However, because of the excessive destruction effect of conventional chemical oxidation methods toward carboxyl defects engineering, the mechanism is still unclear and practice is rare in developing high‐quality structural carboxyl defect‐involved g‐C3N4. Herein, an alternating hydrogen‐oxygen‐plasma treatment is proposed to endow the g‐C3N4 with enriched vacancy defect sites for the subsequent immobilization of carboxyl groups, thus overcoming the problem of lacking of covalent binding sites in g‐C3N4 in developing carboxyl defective g‐C3N4 photocatalysts. The alternating hydrogen‐oxygen‐plasma treatment does not only influence the defect structure of g‐C3N4, but also changes its morphology, optimizes the electronic distribution, and increases the separation efficiency of photogenerated electrons and holes, thereby increasing photocatalytic H2 evolution by 7.91 times. Density functional calculations and electrochemical characterization suggest that the carboxyl defects generated by the fast H2‐O2 plasma modification lead to a local asymmetric electron environment, which enhances carrier separation capability and significantly improves H2 generation activity. This study provides a new insight into the rational design and fabrication of defect‐containing photocatalysts, carbon materials, and polymers.
机译:抽象的结构性缺陷赋予催化剂日益被由于提高催化活性的多个缺陷网站(例如,职位空缺或官能团)。然而,由于过度的破坏传统化学氧化方法的效果对羧基缺陷工程机制尚不清楚,实践是罕见的在发展中对高质量结构羧基缺陷检测g C3N4应承担的。氢量氧等离子治疗建议赋予g C3N4与丰富空位缺陷网站的后续固定羧基,从而克服的问题缺乏g C3N4应承担的共价结合位点发展中羧基g C3N4应承担的缺陷论文的。氢量氧等离子体处理不仅影响g C3N4应承担的缺陷结构,但也改变其形态,优化电子分销,增加了分离效率photogenerated电子和空穴,从而增加光催化H2进化的7.91倍。计算和电化学表征显示生成的羧基缺陷快速H2 O2等离子体改性导致当地不对称电子环境提高分离能力和载体极大地提高了H2代活动。这项研究提供了一个新的见解合理的设计和制造包含论文的缺陷检测,碳材料和聚合物。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号