首页> 外文期刊>PAMM >Challenges in two‐scale computational homogenization of mechanical metamaterials
【24h】

Challenges in two‐scale computational homogenization of mechanical metamaterials

机译:机械超材料双尺度计算均质化的挑战

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Thanks to the advancement of additive manufacturing technologies, mechanical metamaterials have attracted a great deal of attention in recent years. With the employment of such technologies, materials with exceptional or tailored mechanical properties can be easily manufactured mainly by 3D printing of different microstructures rather than by changing the material composition. These lattice materials can provide remarkable material properties in spite of being significantly lighter than typical bulk materials. Due to the large number of degrees of freedom for engineering structures, single‐scale numerical simulation of such cellular materials is computationally demanding. Therefore, two‐scale computational homogenization approaches, such as FE2 and FE‐FFT, can perform a key role in the cost‐effective numerical modeling of metamaterials. Two‐scale computational homogenization methods rely on solving a boundary value problem (BVP) for each of the macroscopic and microscopic scales in a nested procedure. Although representative homogenization techniques have been widely used to study materials with heterogeneous microstructures, there still exist some challenges in their employment for lattice materials. This study addresses main challenges in two‐scale‐based computational homogenization methods for numerical modeling of mechanical metamaterials. High dependence of convergence rate and accuracy on phase contrast for fast Fourier transform (FFT) solvers and comparable macro and micro characteristic lengths in metamaterials (i.e. the applicability of the principle of scale separation) are some examples of such challenges.
机译:摘要由于添加剂的发展制造技术、机械超材料吸引了大量的近年来关注。这些技术、材料与特殊或可以很容易地定制机械属性主要由3 d打印不同的制造微观结构,而不是通过改变材料组成。尽管提供非凡的材料属性被显著轻于典型的大部分材料。工程结构的自由,单身的规模这样的细胞材料的数值模拟是计算要求。两尺度计算均质化方法,如铁,铁FFT,可以执行关键作用成本有效的数值模拟超材料。均匀化方法依赖于解决边界值问题(BVP)为每个宏观和微观尺度嵌套的过程。尽管代表均化技术被广泛用于研究材料吗异构的微观结构,仍然存在一些挑战就业晶格材料。进入两量表为基础计算均质化机械的方法进行数值模拟超材料。速度和准确性相衬的快傅里叶变换(FFT)方法和可比性宏观和微观特征长度超材料(即的适用性规模分离原则)是一些例子这样的挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号