首页> 外文期刊>Nanoscale >Size-controlled electron transfer rates determine hydrogen generation efficiency in colloidal Pt-decorated CdS quantum dots
【24h】

Size-controlled electron transfer rates determine hydrogen generation efficiency in colloidal Pt-decorated CdS quantum dots

机译:Size-controlled电子转移利率确定氢生成胶体的效率Pt-decorated CdS量子点

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Semiconducting quantum dots (QDs) have been considered as promising building blocks of solar energy harvesting systems because of size-dependent electronic structures, e.g. QD-metal heterostructures for solar-driven H-2 production. In order to design improved systems, it is crucial to understand size-dependent QD-metal interfacial electron transfer dynamics, picosecond processes in particular. Here, we report that the transfer rates of photogenerated electrons in Pt-decorated CdS QDs can be varied over more than two orders of magnitude by controlling the QD size. In small QDs (2.8 nm diameter), conduction band electrons transfer to Pt sites in an average timescale of approximate to 30 ps, giving a transfer rate of 2.9 x 10(10) s(-1) while in significantly larger particles (4.8 nm diameter) the transfer rates decrease to 1.4 x 10(8) s(-1). We attribute this to the tuning of the electron transfer driving force via the quantum confinement-controlled energetic off-set between the involved electronic states of the QDs and the co-catalyst. The same size-dependent trend is observed in the presence of an electron acceptor in solution. With methyl viologen present, electrons leave the QDs within 1 ps for 2.8 nm QDs while for 4.6 nm QDs this process takes nearly 40 ps. The transfer rates are directly correlated with H-2 generation efficiencies: faster electron transfer leads to higher H-2 generation efficiencies. 2.8 nm QDs display a H-2 generation quantum efficiency of 17.3, much higher than the 11.4 for their 4.6 nm diameter counterpart. We explain these differences by the fact that slower electron transfer cannot compete as efficiently as faster electron transfer with recombination and other losses.
机译:半导体量子点(量子点)认为是有前途的积木的太阳能因为能量收集系统尺度依赖的电子结构,如。为太阳能2 QD-metal异质结构生产。尺度依赖的理解是至关重要的QD-metal界面电子转移动力学,尤其是微微秒的过程。报告说,photogenerated的转移率量子点中的电子Pt-decorated cd可以不同超过两个数量级控制QD大小。直径),导带电子转移Pt网站在一个近似的平均时间30 ps,传输速率为2.9 x 10 (10)(1)在显著更大的粒子(4.8 nm直径)传递率降低1.4 x 10(8)(1)。通过调优的电子传递动力量子confinement-controlled精力充沛涉及电子态之间的抵消量子点和co-catalyst。尺度依赖的趋势是观察到的存在电子受体的解决方案。紫罗碱,量子点电子离开1 ps量子点量子点为2.8 nm而为4.6海里过程耗时近40 ps,转移率直接与2代效率:更快的电子转移导致2代效率更高。显示一个2代的量子效率17.3%,远高于11.4%的4.6nm直径。差异的慢电子转移快无法尽可能有效地竞争电子转移和重组的损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号