首页> 外文期刊>Advanced synthesis & catalysis >Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance
【24h】

Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance

机译:不同酶固定策略提高酶性能的潜力

获取原文
获取原文并翻译 | 示例
       

摘要

Enzyme biocatalysis plays a very relevant role in the development of many chemical industries, e.g., energy, food or fine chemistry. To achieve this goal, enzyme immobilization is a usual pre-requisite as a solution to get reusable biocatalysts and thus decrease the price of this relatively expensive compound. However, a proper immobilization technique may permit far more than to get a reusable enzyme; it may be used to improve enzyme performance by improving some enzyme limitations: enzyme purity, stability (including the possibility of enzyme reactivation), activity, specificity, selectivity, or inhibitions. Among the diverse immobilization techniques, the use of pre-existing supports to immobilize enzymes (via covalent or physical coupling) and the immobilization without supports [enzyme crosslinked aggregates (CLEAs) or crystals (CLECs)] are the most used or promising ones. This paper intends to give the advantages and disadvantages of the different existing immobilization strategies to solve the different aforementioned enzyme limitations. Moreover, the use of nanoparticles as immobilization supports is achieving an increasing importance, as the nanoparticles versatility increases and becomes more accessible to the researchers. We will also discuss here some of the advantages and drawbacks of these non porous supports compared to conventional porous supports. Although there are no universal optimal solutions for all cases, we will try to give some advice to select the optimal strategy for each particular enzyme and process, considering the enzyme properties, nature of the process and of the substrate. In some occasions the selection will be compulsory, for example due to the nature of the substrate. In other cases the optimal biocatalyst may depend on the company requirements (e.g., volumetric activity, enzyme stability, etc).
机译:酶的生物催化作用在许多化学工业的发展中起着非常重要的作用,例如能源,食品或精细化学。为了实现该目标,酶固定是获得可重复使用的生物催化剂并因此降低这种相对昂贵的化合物的价格的常规先决条件。但是,适当的固定技术可能不仅能获得可重复使用的酶,而且还具有更多用途。它可以通过改善某些酶的限制来改善酶的性能:酶的纯度,稳定性(包括酶重新激活的可能性),活性,特异性,选择性或抑制作用。在各种各样的固定技术中,最常用或有前途的方法是使用预先存在的载体固定酶(通过共价或物理偶联)和不使用载体固定[酶交联聚集体(CLEA)或晶体(CLEC)]。本文旨在给出解决现有的上述酶限制的不同现有固定化策略的优缺点。此外,随着纳米颗粒多功能性的提高,研究人员更容易获得纳米颗粒作为固定化载体的重要性。与常规的多孔载体相比,我们还将在这里讨论这些无孔载体的一些优点和缺点。尽管在所有情况下都没有通用的最佳解决方案,但我们将尝试提供一些建议,以针对每种特定的酶和工艺选择最佳策略,同时考虑酶的特性,工艺和底物的性质。在某些情况下,例如由于基材的性质,该选择将是强制性的。在其他情况下,最佳的生物催化剂可能取决于公司的要求(例如,体积活性,酶稳定性等)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号