首页> 外文期刊>Antioxidants and redox signalling >Protein S-nitrosylation in Plasmodium falciparum
【24h】

Protein S-nitrosylation in Plasmodium falciparum

机译:恶性疟原虫中的蛋白S-亚硝基化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Aims: Due to its life in different hosts and environments, the human malaria parasite Plasmodium falciparum is exposed to oxidative and nitrosative challenges. Nitric oxide (NO) and NO-derived reactive nitrogen species can constitute nitrosative stress and play a major role in NO-related signaling. However, the mode of action of NO and its targets in P. falciparum have hardly been characterized. Protein S-nitrosylation (SNO), a posttranslational modification of protein cysteine thiols, has emerged as a principal mechanism by which NO exerts diverse biological effects. Despite its potential importance, SNO has hardly been studied in human malaria parasites. Using a biotin-switch approach coupled to mass spectrometry, we systemically studied SNO in P. falciparum cell extracts. Results: We identified 319 potential targets of SNO that are widely distributed throughout various cellular pathways. Glycolysis in the parasite was found to be a major target, with glyceraldehyde-3-phosphate dehydrogenase being strongly inhibited by S-nitrosylation of its active site cysteine. Furthermore, we show that P. falciparum thioredoxin 1 (PfTrx1) can be S-nitrosylated at its nonactive site cysteine (Cys43). Mechanistic studies indicate that PfTrx1 possesses both denitrosylating and transnitrosylating activities mediated by its active site cysteines and Cys43, respectively. Innovation: This work provides first insights into the S-nitrosoproteome of P. falciparum and suggests that the malaria parasite employs the thioredoxin system to deal with nitrosative challenges. Conclusion: Our results indicate that SNO may influence a variety of metabolic processes in P. falciparum and contribute to our understanding of NO-related signaling processes and cytotoxicity in the parasites.
机译:目的:由于其在不同宿主和环境中的生活,人类疟疾寄生虫恶性疟原虫面临氧化和亚硝化的挑战。一氧化氮(NO)和NO衍生的反应性氮物质可构成亚硝化胁迫,并在NO相关信号传导中起主要作用。然而,在恶性疟原虫中NO及其靶标的作用方式几乎没有被表征。蛋白质S-亚硝基化(SNO)是蛋白质半胱氨酸硫醇的翻译后修饰,已成为NO发挥多种生物学效应的主要机制。尽管它具有潜在的重要性,但几乎没有在人类疟疾寄生虫中研究SNO。使用生物素开关方法与质谱联用,我们系统地研究了恶性疟原虫细胞提取物中的SNO。结果:我们确定了319个潜在的SNO靶标,这些靶标广泛分布于各种细胞途径中。发现该寄生虫中的糖酵解是主要目标,其活性位点半胱氨酸的S-亚硝基化强烈抑制了3-磷酸甘油醛脱氢酶。此外,我们显示恶性疟原虫硫氧还蛋白1(PfTrx1)可以在其非活性位点半胱氨酸(Cys43)上被S-亚硝基化。机理研究表明,PfTrx1分别具有由其活性位点半胱氨酸和Cys43介导的去亚硝化和反硝化活性。创新:这项工作提供了对恶性疟原虫S-亚硝基蛋白质组学的初步见识,并表明疟原虫利用硫氧还蛋白系统应对亚硝化挑战。结论:我们的结果表明,SNO可能影响恶性疟原虫的各种代谢过程,并有助于我们理解寄生虫中NO相关的信号传导过程和细胞毒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号