首页> 外文期刊>Antioxidants and redox signalling >Selective vulnerability of synaptic signaling and metabolism to nitrosative stress
【24h】

Selective vulnerability of synaptic signaling and metabolism to nitrosative stress

机译:突触信号和代谢对亚硝化应激的选择性脆弱性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Significance: Nitric oxide (NO) plays diverse physiological roles in the central nervous system, where it modulates neuronal communication, regulates blood flow, and contributes to the innate immune responses. In a number of brain pathologies, the excessive production of NO also leads to the formation of reactive and toxic intermediates generically termed reactive nitrogen species (RNS). RNS cause irreversible or poorly reversible damage to brain cells. Recent Advances: Recent work in the field focused on the ability of NO and RNS to yield protein modifications, including the S-nitrosation of cysteine residues, which, in many instances, impact cellular functions and viability. Critical Issues: The vast majority of neuropathological studies focus on the loss of cell viability, but nitrosative stress may also strongly impair the functions of neuronal processes: axonal projections and dendritic trees. The functional integrity of axons and dendrites critically depends on local metabolism and effective delivery of metabolic enzymes and organelles. Here, we summarize the existing literature describing the effects of nitrosative stress on the major pathways of energetic metabolism: glycolysis, tricarboxylic acid cycle, and mitochondrial respiration, with the emphasis on modifications of protein thiols. Future Directions: We propose that axons and dendrites are highly vulnerable to nitrosative stress because of their low glycolytic capacity and high dependence on timely delivery of metabolic enzymes and organelles from the cell body. Thus, supplementation with the end products of glycolysis, pyruvate or lactate, may help preserve metabolism in distal neuronal processes and protect or restore synaptic function in the ailing brain.
机译:意义:一氧化氮(NO)在中枢神经系统中扮演着多种生理角色,它调节神经元的沟通,调节血流并促进先天性免疫反应。在许多脑部疾病中,NO的过量产生还导致形成反应性和有毒的中间体,通常称为反应性氮类(RNS)。 RNS对脑细胞造成不可逆或不可逆的损害。最新进展:该领域的最新工作集中于NO和RNS产生蛋白质修饰的能力,包括半胱氨酸残基的S-亚硝化,在许多情况下会影响细胞功能和生存能力。关键问题:绝大多数神经病理学研究集中于细胞活力的丧失,但亚硝化应激也可能严重损害神经元过程的功能:轴突投射和树突状树。轴突和树突的功能完整性主要取决于局部代谢以及代谢酶和细胞器的有效传递。在这里,我们总结了现有文献,这些文献描述了亚硝化应激对能量代谢的主要途径的影响:糖酵解,三羧酸循环和线粒体呼吸,重点是蛋白质硫醇的修饰。未来方向:我们建议轴突和树突状细胞极易遭受亚硝化胁迫,因为它们的糖酵解能力低并且对从细胞体内及时传递代谢酶和细胞器的依赖性更高。因此,补充糖酵解终产物,丙酮酸或乳酸可以帮助保存远端神经元过程中的新陈代谢,并保护或恢复患病大脑的突触功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号