首页> 外文期刊>Bone >In vivo static creep loading of the rat forelimb reduces ulnar structural properties at time-zero and induces damage-dependent woven bone formation.
【24h】

In vivo static creep loading of the rat forelimb reduces ulnar structural properties at time-zero and induces damage-dependent woven bone formation.

机译:大鼠前肢的体内静态蠕变载荷在零时降低尺骨结构特性,并诱导损伤相关的编织骨形成。

获取原文
获取原文并翻译 | 示例
           

摘要

Periosteal woven bone forms in response to stress fractures and pathological overload. The mechanical factors that regulate woven bone formation are poorly understood. Fatigue loading of the rat ulna triggers a woven bone response in proportion to the level of applied fatigue displacement. However, because fatigue produces damage by application of cyclic loading it is unclear if the osteogenic response is due to bone damage (injury response) or dynamic strain (adaptive response). Creep loading, in contrast to fatigue, involves application of a static force. Our objectives were to use static creep loading of the rat forelimb to produce discrete levels of ulnar damage, and subsequently to determine the bone response over time. We hypothesized that 1) increases in applied displacement during loading correspond to ulnae with increased crack number, length and extent, as well as decreased mechanical properties; and 2) in vivo creep loading stimulates a damage-dependent dose-response in periosteal woven boneformation. Creep loading of the rat forelimb to progressive levels of sub-fracture displacement led to progressive bone damage (cracks) and loss of whole-bone mechanical properties (especially stiffness) at time-zero. For example, loading to 60% of fracture displacement caused a 60% loss of ulnar stiffness and a 25% loss of strength. Survival experiments showed that woven bone formed in a dose-dependent manner, with greater amounts of woven bone in ulnae that were loaded to higher displacements. Furthermore, after 14 days the mechanical properties of the loaded limb were equal or superior to control, indicating functional repair of the initial damage. We conclude that bone damage created without dynamic strain triggers a woven bone response, and thus infer that the woven bone response reported after fatigue loading and in stress fractures is in large part a response to bone damage.
机译:骨膜编织骨形成以应对应力性骨折和病理性超负荷。调节编织骨形成的机械因素了解甚少。大鼠尺骨的疲劳负荷与所施加的疲劳位移水平成比例地触发编织的骨骼反应。但是,由于疲劳会因施加周期性载荷而产生损伤,因此尚不清楚成骨反应是否是由于骨损伤(损伤反应)或动态应变(适应性反应)引起的。与疲劳相反,蠕变载荷涉及施加静力。我们的目标是利用大鼠前肢的静态蠕变载荷产生不连续的尺骨损伤水平,然后确定随时间变化的骨骼反应。我们假设1)加载过程中施加位移的增加与尺骨的裂纹数量,长度和范围的增加以及机械性能的降低相对应; 2)体内蠕变负荷刺激了骨膜编织骨形成中的损伤依赖性剂量反应。在零时差时,大鼠前肢的蠕变载荷逐渐增加至亚骨折移位的水平,从而导致进行性骨损伤(破裂)和全骨力学性能(尤其是僵硬)丧失。例如,加载至骨折位移的60%会导致尺骨僵硬度降低60%,强度降低25%。生存实验表明,编织骨的形成与剂量有关,尺骨中的编织骨数量更多,位移更大。此外,在14天后,受累肢体的机械性能等于或优于对照,表明修复了最初的损伤。我们得出的结论是,在没有动态应变的情况下产生的骨骼损伤会触发编织的骨骼反应,因此可以推断疲劳负荷和应力性骨折后报告的编织的骨骼反应在很大程度上是对骨骼损伤的反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号