...
首页> 外文期刊>Nanoscale >First-principles molecular dynamics study on the surface chemistry and nanotribological properties of MgAl layered double hydroxides
【24h】

First-principles molecular dynamics study on the surface chemistry and nanotribological properties of MgAl layered double hydroxides

机译:采用分子动力学研究表面化学和nanotribological属性毫伽的水滑石

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Layered double hydroxides (LDHs) are promising materials for lubrication. However, the underlying mechanism that leads to the low friction of the material is not well-understood. In this study, density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations have been used to study the reduced friction mechanism of MgAl-LDH. Our results indicate that the introduction of trivalent cations has a significant impact on the friction reduction of the LDH. Besides, the lateral force shows a strong correlation with the coverage of the hydroxyl group on the surface. By using AIMD simulation, we show that the water/hydroxide molecules interact with the surface through strong hydrogen bonds that confine the movement and the orientation of the intercalated molecules on the surface. Furthermore, the friction is reduced when the water thickness is increased. The reaction pathways of water with the LDH surface has been investigated using well-tempered metadynamics simulation. We found that the LDH can promote proton transfer, leading to the formation of hydroxide intermediates (OH), which then chemically adsorb on the surface. The chemical adsorption of the hydroxide intermediates can cleave the O-H bonds on the LDH surface.
机译:水滑石(类)是有前途的对润滑材料。潜在的机制,导致了低摩擦的材料不是很好理解。在这项研究中,密度泛函理论(DFT)和从头开始分子动力学(AIMD)模拟被用来研究减少MgAl-LDH的摩擦机制。表明三价的引入阳离子对摩擦产生重大影响LDH的减少。显示了很强的相关性的报道表面的羟基。仿真中,我们表明,水/氢氧根分子与表面通过交互强大的氢键,限制运动和分子间的方向表面上。减少水厚度增加时。水与LDH的反应途径使用经回火处理的表面已被调查metadynamics模拟。能促进质子转移,导致形成氢氧化物中间体(哦)然后表面化学吸附。化学吸附的氢氧化在LDH中间体可以分裂地债券表面。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号